ﻻ يوجد ملخص باللغة العربية
A quantum Hall edge state provides a rich foundation to study electrons in 1-dimension (1d) but is limited to chiral propagation along a single direction. Here, we demonstrate a versatile platform to realize new 1d systems made by combining quantum Hall edge states of opposite chiralities in a graphene electron-hole bilayer. Using this approach, we engineer helical 1d edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong nonlocal transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Moreover, we investigate these electron-hole bilayers in the fractional quantum Hall regime, where we observe conduction through fractional and integer edge states of opposite chiralities, paving the way towards the realization of 1d helical systems with fractional quantum statistics.
When electrons are confined in two dimensions and subjected to strong magnetic fields, the Coulomb interactions between them become dominant and can lead to novel states of matter such as fractional quantum Hall liquids. In these liquids electrons li
We study the low energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several possible simple boundaries geometries related to zigzag edges are considered. Tight-binding calculations reveal three types of edge state behavi
Electron spin and pseudospin degrees of freedom play a critical role in many-body phenomena through exchange interactions, the understanding and control of which enable the construction of states with complex topological orders and exotic excitations
Symmetry breaking in a quantum system often leads to complex emergent behavior. In bilayer graphene (BLG), an electric field applied perpendicular to the basal plane breaks the inversion symmetry of the lattice, opening a band gap at the charge neutr
We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be ex