ﻻ يوجد ملخص باللغة العربية
We constrain spatially-flat tilted and nonflat untilted scalar field ($phi$) dynamical dark energy inflation ($phi$CDM) models by using Planck 2015 cosmic microwave background (CMB) anisotropy measurements and recent baryonic acoustic oscillation distance observations, Type Ia supernovae apparent magnitude data, Hubble parameter measurements, and growth rate data. We assume an inverse power-law scalar field potential energy density $V(phi)=V_0 phi^{-alpha}$. We find that the combination of the CMB data with the four non-CMB data sets significantly improves parameter constraints and strengthens the evidence for nonflatness in the nonflat untilted $phi$CDM case from $1.8sigma$ for the CMB measurements only to more than $3.1sigma$ for the combined data. In the nonflat untilted $phi$CDM model current observations favor a spatially closed universe with spatial curvature contributing about two-thirds of a percent of the present cosmological energy budget. The flat tilted $phi$CDM model is a 0.4$sigma$ better fit to the data than is the standard flat tilted $Lambda$CDM model: current data allow for the possibility that dark energy is dynamical. The nonflat tilted $phi$CDM model is in better accord with the Dark Energy Survey bounds on the rms amplitude of mass fluctuations now ($sigma_8$) as a function of the nonrelativistic matter density parameter now ($Omega_m$) but it does not provide as good a fit to the larger-multipole Planck 2015 CMB anisotropy data as does the standard flat tilted $Lambda$CDM model. A few cosmological parameter value measurements differ significantly when determined using the tilted flat and the untilted nonflat $phi$CDM models, including the cold dark matter density parameter and the reionization optical depth.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is
We perform Markov chain Monte Carlo analyses to put constraints on the non-flat $phi$CDM inflation model using Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation distance measurements. The $phi$CDM model is
Most dark energy models have the $Lambda$CDM as their limit, and if future observations constrain our universe to be close to $Lambda$CDM Bayesian arguments about the evidence and the fine-tuning will have to be employed to discriminate between the m
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analys
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic osc