ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational constraints on the tilted spatially-flat and the untilted nonflat $phi$CDM dynamical dark energy inflation models

91   0   0.0 ( 0 )
 نشر من قبل Chan-Gyung Park
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain spatially-flat tilted and nonflat untilted scalar field ($phi$) dynamical dark energy inflation ($phi$CDM) models by using Planck 2015 cosmic microwave background (CMB) anisotropy measurements and recent baryonic acoustic oscillation distance observations, Type Ia supernovae apparent magnitude data, Hubble parameter measurements, and growth rate data. We assume an inverse power-law scalar field potential energy density $V(phi)=V_0 phi^{-alpha}$. We find that the combination of the CMB data with the four non-CMB data sets significantly improves parameter constraints and strengthens the evidence for nonflatness in the nonflat untilted $phi$CDM case from $1.8sigma$ for the CMB measurements only to more than $3.1sigma$ for the combined data. In the nonflat untilted $phi$CDM model current observations favor a spatially closed universe with spatial curvature contributing about two-thirds of a percent of the present cosmological energy budget. The flat tilted $phi$CDM model is a 0.4$sigma$ better fit to the data than is the standard flat tilted $Lambda$CDM model: current data allow for the possibility that dark energy is dynamical. The nonflat tilted $phi$CDM model is in better accord with the Dark Energy Survey bounds on the rms amplitude of mass fluctuations now ($sigma_8$) as a function of the nonrelativistic matter density parameter now ($Omega_m$) but it does not provide as good a fit to the larger-multipole Planck 2015 CMB anisotropy data as does the standard flat tilted $Lambda$CDM model. A few cosmological parameter value measurements differ significantly when determined using the tilted flat and the untilted nonflat $phi$CDM models, including the cold dark matter density parameter and the reionization optical depth.



قيم البحث

اقرأ أيضاً

We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
We perform Markov chain Monte Carlo analyses to put constraints on the non-flat $phi$CDM inflation model using Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation distance measurements. The $phi$CDM model is a consistent dynamical dark energy model in which the currently accelerating cosmological expansion is powered by a scalar field $phi$ slowly rolling down an inverse power-law potential energy density. We also use a physically consistent power spectrum for energy density inhomogeneities in this non-flat model. We find that, like the closed-$Lambda$CDM and closed-XCDM models, the closed-$phi$CDM model provides a better fit to the lower multipole region of the CMB temperature anisotropy data compared to that provided by the tilted flat-$Lambda$CDM model. Also, like the other closed models, this model reduces the tension between the Planck and the weak lensing $sigma_8$ constraints. However, the higher multipole region of the CMB temperature anisotropy data are better fit by the tilted flat-$Lambda$CDM model than by the closed models.
Most dark energy models have the $Lambda$CDM as their limit, and if future observations constrain our universe to be close to $Lambda$CDM Bayesian arguments about the evidence and the fine-tuning will have to be employed to discriminate between the m odels. Assuming a baseline $Lambda$CDM model we investigate a number of quintessence and phantom dark energy models, and we study how they would perform when compared to observational data, such as the expansion rate, the angular distance, and the growth rate measurements, from the upcoming Dark Energy Spectroscopic Instrument (DESI) survey. We sample posterior likelihood surfaces of these dark energy models with Monte Carlo Markov Chains while using central values consistent with the Planck $Lambda$CDM universe and covariance matrices estimated with Fisher information matrix techniques. We find that for this setup the Bayes factor provides a substantial evidence in favor of the $Lambda$CDM model over most of the alternatives. We also investigated how well the CPL parametrization approximates various scalar field dark energy models, and identified the location for each dark energy model in the CPL parameter space.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analys es of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic osc illation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of $Omega_{m0}$. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at $z=0.22$, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا