ﻻ يوجد ملخص باللغة العربية
Identifying the two-dimensional (2D) topological insulating (TI) state in new materials and its control are crucial aspects towards the development of voltage-controlled spintronic devices with low power dissipation. Members of the 2D transition metal dichalcogenides (TMDCs) have been recently predicted and experimentally reported as a new class of 2D TI materials, but in most cases edge conduction seems fragile and limited to the monolayer phase fabricated on specified substrates. Here, we realize the controlled patterning of the 1T-phase embedded into the 2H-phase of thin semiconducting molybdenum-disulfide (MoS2) by laser beam irradiation. Integer fractions of the quantum of resistance, the dependence on laser-irradiation conditions, magnetic field, and temperature, as well as the bulk gap observation by scanning tunneling spectroscopy and theoretical calculations indicate the presence of the quantum spin Hall phase in our patterned 1T phases.
We propose that ordinary semiconductors with large spin-orbit coupling (SOC), such as GaAs, can host stable, robust, and {it tunable} topological states in the presence of quantum confinement and superimposed potentials with hexagonal symmetry. We sh
The quantum-spin-Hall (QSH) phase of 2D topological insulators has attracted increased attention since the onset of 2D materials research. While large bulk gaps with vanishing edge gaps in atomically thin layers have been reported, verifications of t
In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate w
We study the possibility of transferring fermions from a trivial system as particle source to an empty system but at topological phase as a mold for casting a stable topological insulator dynamically. We show that this can be realized by a non-Hermit
The magnetic behavior of truncated conical nanoparticles in patterned thin films is investigated as a function of their size and shape. Using a scaling technique, phase diagrams giving the relative stability of characteristic internal magnetic struct