ﻻ يوجد ملخص باللغة العربية
We propose that ordinary semiconductors with large spin-orbit coupling (SOC), such as GaAs, can host stable, robust, and {it tunable} topological states in the presence of quantum confinement and superimposed potentials with hexagonal symmetry. We show that the electronic gaps which support chiral spin edge states can be as large as the electronic bandwidth in the heterostructure miniband. The existing lithographic technology can produce a topological insulator (TI) operating at temperature $10- 100K$. Improvement of lithographic techniques will open way to tunable room temperature TI.
Identifying the two-dimensional (2D) topological insulating (TI) state in new materials and its control are crucial aspects towards the development of voltage-controlled spintronic devices with low power dissipation. Members of the 2D transition meta
We study the possibility of transferring fermions from a trivial system as particle source to an empty system but at topological phase as a mold for casting a stable topological insulator dynamically. We show that this can be realized by a non-Hermit
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at systems boundaries. It has led to a number of counter-intuitive phenomena and challenged our understanding of bulk-boundary c
We present a detailed investigation of different excitonic states weakly confined in single GaAs/AlGaAs quantum dots obtained by the Al droplet-etching method. For our analysis we make use of temperature-, polarization- and magnetic field-dependent $
We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes fr