ترغب بنشر مسار تعليمي؟ اضغط هنا

A critical strange metal from fluctuating gauge fields in a solvable random model

124   0   0.0 ( 0 )
 نشر من قبل Aavishkar Patel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev (SYK) model, which is a solvable $0+1$ dimensional model of a non-Fermi liquid, we develop a solvable, infinite-ranged random-hopping model of fermions coupled to fluctuating U(1) gauge fields. In a specific large-$N$ limit, our model realizes a gapless non-Fermi liquid phase, which combines the effects of hopping and interaction terms. We derive the thermodynamic properties of the non-Fermi liquid phase realized by this model, and the charge transport properties of an infinite-dimensional version with spatial structure.



قيم البحث

اقرأ أيضاً

We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i n this system are represented by three copies of a U(1) emergent gauge field, related by global spin-rotation symmetry. We show that the Goldstone modes associated with spin-glass order are excitations of these gauge fields, and that the standard theory of Goldstone modes in Heisenberg spin glasses (due to Halperin and Saslow) must be modified in this setting.
An important yet largely unsolved problem in the statistical mechanics of disordered quantum systems is to understand how quenched disorder affects quantum phase transitions in systems of itinerant fermions. In the clean limit, continuous quantum pha se transitions of the symmetry-breaking type in Dirac materials such as graphene and the surfaces of topological insulators are described by relativistic (2+1)-dimensional quantum field theories of the Gross-Neveu-Yukawa (GNY) type. We study the universal critical properties of the chiral Ising, XY, and Heisenberg GNY models perturbed by quenched random-mass disorder, both uncorrelated or with long-range power-law correlations. Using the replica method combined with a controlled triple epsilon expansion below four dimensions, we find a variety of new finite-randomness critical and multicritical points with nonzero Yukawa coupling between low-energy Dirac fields and bosonic order parameter fluctuations, and compute their universal critical exponents. Analyzing bifurcations of the renormalization-group flow, we find instances of the fixed-point annihilation scenario---continuously tuned by the power-law exponent of long-range disorder correlations and associated with an exponentially large crossover length---as well as the transcritical bifurcation and the supercritical Hopf bifurcation. The latter is accompanied by the birth of a stable limit cycle on the critical hypersurface, which represents the first instance of fermionic quantum criticality with emergent discrete scale invariance.
We study level statistics of a critical random matrix ensemble of a power-law banded complex Hermitean matrices. We compute numerically the level compressibility via the level number variance and compare it with the analytical formula for the exactly solvable model of Moshe, Neuberger and Shapiro.
We study the effects of bond and site disorder in the classical $J_{1}$-$J_{2}$ Heisenberg model on a square lattice in the order-by-disorder frustrated regime $2J_{2}>left|J_{1}right|$. Combining symmetry arguments, numerical energy minimization and large scale Monte Carlo simulations, we establish that the finite temperature Ising-like transition of the clean system is destroyed in the presence of any finite concentration of impurities. We explain this finding via a random-field mechanism which generically emerges in systems where disorder locally breaks the same real-space symmetry spontaneously globally broken by the associated order parameter. We also determine that the phase replacing the clean one is a paramagnet polarized in the nematic glass order with non-trivial magnetic response. This is because disorder also induces non-collinear spin-vortex-crystal order and produces a conjugated transverse dipolar random field. As a result of these many competing effects, the associated magnetic susceptibilities are non-monotonic functions of the temperature. As a further application of our methods, we show the generation of random axes in other frustrated magnets with broken SU(2) symmetry. We also discuss the generality of our findings and their relevance to experiments.
We show how U(1) lattice gauge theories display key signatures of ergodicity breaking in the presence of a random charge background. Contrary to the widely studied case of spin models, in the presence of Coulomb interactions, the spectral properties of such lattice gauge theories are very weakly affected by finite-volume effects. This allows to draw a sharp boundary for the ergodic regime, and thus the breakdown of quantum chaos for sufficiently strong gauge couplings, at the system sizes accessible via exact diagonalization. Our conclusions are independent on the value of a background topological angle, and are contrasted with a gauge theory with truncated Hilbert space, where instead we observe very strong finite-volume effects akin to those observed in spin chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا