ﻻ يوجد ملخص باللغة العربية
Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev (SYK) model, which is a solvable $0+1$ dimensional model of a non-Fermi liquid, we develop a solvable, infinite-ranged random-hopping model of fermions coupled to fluctuating U(1) gauge fields. In a specific large-$N$ limit, our model realizes a gapless non-Fermi liquid phase, which combines the effects of hopping and interaction terms. We derive the thermodynamic properties of the non-Fermi liquid phase realized by this model, and the charge transport properties of an infinite-dimensional version with spatial structure.
We consider magnon excitations in the spin-glass phase of geometrically frustrated antiferromagnets with weak exchange disorder, focussing on the nearest-neighbour pyrochlore-lattice Heisenberg model at large spin. The low-energy degrees of freedom i
An important yet largely unsolved problem in the statistical mechanics of disordered quantum systems is to understand how quenched disorder affects quantum phase transitions in systems of itinerant fermions. In the clean limit, continuous quantum pha
We study level statistics of a critical random matrix ensemble of a power-law banded complex Hermitean matrices. We compute numerically the level compressibility via the level number variance and compare it with the analytical formula for the exactly solvable model of Moshe, Neuberger and Shapiro.
We study the effects of bond and site disorder in the classical $J_{1}$-$J_{2}$ Heisenberg model on a square lattice in the order-by-disorder frustrated regime $2J_{2}>left|J_{1}right|$. Combining symmetry arguments, numerical energy minimization and
We show how U(1) lattice gauge theories display key signatures of ergodicity breaking in the presence of a random charge background. Contrary to the widely studied case of spin models, in the presence of Coulomb interactions, the spectral properties