ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy level statistics of a critical random matrix ensemble

77   0   0.0 ( 0 )
 نشر من قبل Vladimir Kravtsov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study level statistics of a critical random matrix ensemble of a power-law banded complex Hermitean matrices. We compute numerically the level compressibility via the level number variance and compare it with the analytical formula for the exactly solvable model of Moshe, Neuberger and Shapiro.



قيم البحث

اقرأ أيضاً

We numerically study the level statistics of the Gaussian $beta$ ensemble. These statistics generalize Wigner-Dyson level statistics from the discrete set of Dyson indices $beta = 1,2,4$ to the continuous range $0 < beta < infty$. The Gaussian $beta$ ensemble covers Poissonian level statistics for $beta to 0$, and provides a smooth interpolation between Poissonian and Wigner-Dyson level statistics. We establish the physical relevance of the level statistics of the Gaussian $beta$ ensemble by showing near-perfect agreement with the level statistics of a paradigmatic model in studies on many-body localization over the entire crossover range from the thermal to the many-body localized phase. In addition, we show similar agreement for a related Hamiltonian with broken time-reversal symmetry.
Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev (SYK) model, which is a solvable $0+1$ dimensional model of a non-Fermi liquid, we develop a solvable, infinite-ranged random-hopping model of fermions coupled to fluctuat ing U(1) gauge fields. In a specific large-$N$ limit, our model realizes a gapless non-Fermi liquid phase, which combines the effects of hopping and interaction terms. We derive the thermodynamic properties of the non-Fermi liquid phase realized by this model, and the charge transport properties of an infinite-dimensional version with spatial structure.
We study level statistics in ensembles of integrable $Ntimes N$ matrices linear in a real parameter $x$. The matrix $H(x)$ is considered integrable if it has a prescribed number $n>1$ of linearly independent commuting partners $H^i(x)$ (integrals of motion) $left[H(x),H^i(x)right] = 0$, $left[H^i(x), H^j(x)right]$ = 0, for all $x$. In a recent work, we developed a basis-independent construction of $H(x)$ for any $n$ from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the $Ntoinfty$ limit provided $n$ scales at least as $log{N}$; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values $x=x_0$ or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at $ mathcal{O}(N^{-0.5})$ deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest neighbor level statistics.
An important yet largely unsolved problem in the statistical mechanics of disordered quantum systems is to understand how quenched disorder affects quantum phase transitions in systems of itinerant fermions. In the clean limit, continuous quantum pha se transitions of the symmetry-breaking type in Dirac materials such as graphene and the surfaces of topological insulators are described by relativistic (2+1)-dimensional quantum field theories of the Gross-Neveu-Yukawa (GNY) type. We study the universal critical properties of the chiral Ising, XY, and Heisenberg GNY models perturbed by quenched random-mass disorder, both uncorrelated or with long-range power-law correlations. Using the replica method combined with a controlled triple epsilon expansion below four dimensions, we find a variety of new finite-randomness critical and multicritical points with nonzero Yukawa coupling between low-energy Dirac fields and bosonic order parameter fluctuations, and compute their universal critical exponents. Analyzing bifurcations of the renormalization-group flow, we find instances of the fixed-point annihilation scenario---continuously tuned by the power-law exponent of long-range disorder correlations and associated with an exponentially large crossover length---as well as the transcritical bifurcation and the supercritical Hopf bifurcation. The latter is accompanied by the birth of a stable limit cycle on the critical hypersurface, which represents the first instance of fermionic quantum criticality with emergent discrete scale invariance.
We demonstrate a method to solve a general class of random matrix ensembles numerically. The method is suitable for solving log-gas models with biorthogonal type two-body interactions and arbitrary potentials. We reproduce standard results for a vari ety of well-known ensembles and show some new results for the Muttalib-Borodin ensembles and recently introduced $gamma$-ensemble for which analytic results are not yet available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا