ﻻ يوجد ملخص باللغة العربية
The Belle II experiment has just started, searching for physics beyond the Standard Model in $B$, charm and $tau$ decays using data with the integrated luminosity goal of $50 ~mathrm{ab}^{-1}$. Before the physics run with full detector system being installed, Belle II Phase 2 run is on-going at the time of the conference, until July 2018. In this presentation, we describe the environmental monitoring system with an emphasis on the software tools to help the experts and the non-expert shifters who operate the experiment. The monitoring tools are prepared on the control room especially for the shift-takers. It consists of thre components: the monitoring GUI, the alarm system, and the archiver. The monitoring GUI shows the current state of the detector and the alarm system generate warning states from monitored variables with sound and email notification. The archiver is collecting data on single server and provide collected data to the experimental collaborators.
The Belle II experiment is presently in phase-2 operation at the SuperKEKB electron-positron collider in KEK (Tsukuba, Japan). The detector is an upgrade of the Belle experiment at the KEKB collider and it is optimized for the study of rare B decays,
The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a thr
This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to fi
The Belle II experiment is a high-energy physics experiment at the SuperKEKB electron-positron collider. Using Belle II data, high precision measurement of rare decays and CP-violation in heavy quarks and leptons can be performed to probe New Physics
This paper explores the prospect of CMOS devices to assay lead in drinking water, using calorimetry. Lead occurs together with traces of radioisotopes, e.g. Lead-210, producing $gamma$-emissions with energies ranging from 10 keV to several 100 keV wh