ﻻ يوجد ملخص باللغة العربية
The Belle II experiment is a high-energy physics experiment at the SuperKEKB electron-positron collider. Using Belle II data, high precision measurement of rare decays and CP-violation in heavy quarks and leptons can be performed to probe New Physics. In this paper, we present the archiver system used to store the monitoring data of the Belle II detector and discuss in particular how we maintain the system that archives the monitoring process variables of the subdetectors. We currently save about 26 thousand variables including the temperature of various subdetectors components, status of water leak sensors, high voltage power supply status, data acquisition status, and luminosity information of the colliding beams. For stable data taking, it is essential to collect and archive these variables. We ensure the availability and consistency of all the variables from the subdetector and other systems, as well as the status of the archiver itself are consistent and regularly updated. To cope with a possible hardware failure, we prepared a backup archiver that is synchronized with the main archiver.
We present an FPGA-based online data reduction system for the pixel detector of the future Belle II experiment. The occupancy of the pixel detector is estimated at 3 %. This corresponds to a data output rate of more than 20 GB/s after zero suppressio
The Time-Of-Propagation detector is a Cherenkov particle identification detector based on quartz radiator bars for the Belle II experiment at the SuperKEKB electron-positron collider. The purpose of the detector is to identify the type of charged had
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of
A new muon and K_Long detector based on scintillators will be used for the endcap and inner barrel regions in the Belle II experiment, currently under construction. The increased luminosity of the e+e- SuperKEKB collider entails challenging detector
On-detector digital electronics in High-Energy Physics experiments is increasingly being implemented by means of SRAM-based FPGA, due to their capabilities of reconfiguration, real-time processing and multi-gigabit data transfer. Radiation-induced si