ﻻ يوجد ملخص باللغة العربية
The aim of this work is to discuss some aspects of the reduction of order formalism in the context of the Fadeev-Jackiw symplectic formalism, both at the classical and the quantum level. We start by reviewing the symplectic analysis in a regular theory (a higher derivative massless scalar theory), both using the Ostrogradsky prescription and also by reducing the order of the Lagrangian with an auxiliary field, showing the equivalence of these two approaches. The interpretation of the degrees of freedom is discussed in some detail. Finally, we perform the similar analysis in a singular higher derivative gauge theory (the Podolsky electrodynamics), in the reduced order formalism: we claim that this approach have the advantage of clearly separating the symplectic structure of the model into a Maxwell and a Proca (ghost) sector, thus complementing the understanding of the degrees of freedom of the theory and simplifying calculations involving matrices.
In this work we focus on the Carroll-Field-Jackiw (CFJ) modified electrodynamics in combination with a CPT-even Lorentz-violating contribution. We add a photon mass term to the Lagrange density and study the question whether this contribution can ren
In this work we present the study of the renormalizability of the Generalized Quantum Electrodynamics ($GQED_{4}$). We begin the article by reviewing the on-shell renormalization scheme applied to $GQED_{4}$. Thereafter, we calculate the explicit exp
We confirm the stability of Podolskys generalized electrodynamics by constructing a series of two-parametric bounded conserved quantities which includes the canonical energy-momentum tensors. In addition, we evaluate the transition-amplitude of this
High order harmonic generation by extremely intense, interacting, electromagnetic waves in the quantum vacuum is investigated within the framework of the Heisenberg-Euler formalism. Two intersecting plane waves of finite duration are considered in th
We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-ge