ﻻ يوجد ملخص باللغة العربية
High order harmonic generation by extremely intense, interacting, electromagnetic waves in the quantum vacuum is investigated within the framework of the Heisenberg-Euler formalism. Two intersecting plane waves of finite duration are considered in the case of general polarizations. Detailed finite expressions are obtained for the case where only the first Poincare invariant does not vanish. Yields of high harmonics in this case are most effective.
This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmit
We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et a
In this paper we calculate the non-perturbative Euler-Heisenberg Lagrangian for massless QED in a strong magnetic field $H$, where the breaking of the chiral symmetry is dynamically catalyzed by the external magnetic field via the formation of an ele
The aim of this work is to discuss some aspects of the reduction of order formalism in the context of the Fadeev-Jackiw symplectic formalism, both at the classical and the quantum level. We start by reviewing the symplectic analysis in a regular theo