ﻻ يوجد ملخص باللغة العربية
In Poisson percolation each edge becomes open after an independent exponentially distributed time with rate that decreases in the distance from the origin. As a sequel to our work on the square lattice, we describe the limiting shape of the component containing the origin in the oriented case. We show that the density of occupied sites at height $y$ in the cluster is close to the percolation probability in the corresponding homogeneous percolation process, and we study the fluctuations of the boundary.
On the square lattice raindrops fall on an edge with midpoint $x$ at rate $|x|_infty^{-alpha}$. The edge becomes open when the first drop falls on it. Let $rho(x,t)$ be the probability that the edge with midpoint $x=(x_1,x_2)$ is open at time $t$ and
In this paper we consider independent site percolation in a triangulation of $mathbb{R}^2$ given by adding $sqrt{2}$-long diagonals to the usual graph $mathbb{Z}^2$. We conjecture that $p_c=frac{1}{2}$ for any such graph, and prove it for almost every such graph.
Bootstrap percolation on a graph is a deterministic process that iteratively enlarges a set of occupied sites by adjoining points with at least $theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure with
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are
Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empt