ﻻ يوجد ملخص باللغة العربية
On the square lattice raindrops fall on an edge with midpoint $x$ at rate $|x|_infty^{-alpha}$. The edge becomes open when the first drop falls on it. Let $rho(x,t)$ be the probability that the edge with midpoint $x=(x_1,x_2)$ is open at time $t$ and let $n(p,t)$ be the distance at which edges are open with probability $p$ at time $t$. We show that with probability tending to 1 as $t to infty$: (i) the cluster containing the origin $mathbb C_0(t)$ is contained in the square of radius $n(p_c-epsilon,t)$, and (ii) the cluster fills the square of radius $n(p_c+epsilon,t)$ with the density of points near $x$ being close to $theta(rho(x,t))$ where $theta(p)$ is the percolation probability when bonds are open with probability $p$ on $mathbb Z^2$. Results of Nolin suggest that if $N=n(p_c,t)$ then the boundary fluctuations of $mathbb C_0(t)$ are of size $N^{4/7}$.
In Poisson percolation each edge becomes open after an independent exponentially distributed time with rate that decreases in the distance from the origin. As a sequel to our work on the square lattice, we describe the limiting shape of the component
In this paper we consider independent site percolation in a triangulation of $mathbb{R}^2$ given by adding $sqrt{2}$-long diagonals to the usual graph $mathbb{Z}^2$. We conjecture that $p_c=frac{1}{2}$ for any such graph, and prove it for almost every such graph.
Bootstrap percolation on a graph is a deterministic process that iteratively enlarges a set of occupied sites by adjoining points with at least $theta$ occupied neighbors. The initially occupied set is random, given by a uniform product measure with
Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empt
We consider 2d critical Bernoulli percolation on the square lattice. We prove an approximate color-switching lemma comparing k arm probabilities for different polychromatic color sequences. This result is well-known for site percolation on the triang