ﻻ يوجد ملخص باللغة العربية
Four constructions for Ferrers diagram rank-metric (FDRM) codes are presented. The first one makes use of a characterization on generator matrices of a class of systematic maximum rank distance codes. By introducing restricted Gabidulin codes, the second construction is presented, which unifies many known constructions for FDRM codes. The third and fourth constructions are based on two different ways to represent elements of a finite field $mathbb F_{q^m}$ (vector representation and matrix representation). Each of these constructions produces optimal codes with different diagrams and parameters.
Optimal rank-metric codes in Ferrers diagrams can be used to construct good subspace codes. Such codes consist of matrices having zeros at certain fixed positions. This paper generalizes the known constructions for Ferrers diagram rank-metric (FDRM)
We define the rank-metric zeta function of a code as a generating function of its normalized $q$-binomial moments. We show that, as in the Hamming case, the zeta function gives a generating function for the weight enumerators of rank-metric codes. We
A $t$-$(n,d,lambda)$ design over ${mathbb F}_q$, or a subspace design, is a collection of $d$-dimensional subspaces of ${mathbb F}_q^n$, called blocks, with the property that every $t$-dimensional subspace of ${mathbb F}_q^n$ is contained in the same
This paper investigates the construction of rank-metric codes with specified Ferrers diagram shapes. These codes play a role in the multilevel construction for subspace codes. A conjecture from 2009 provides an upper bound for the dimension of a rank
In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We g