ﻻ يوجد ملخص باللغة العربية
This paper considers the difficulty in the set-system approach to generalizing graph theory. These difficulties arise categorically as the category of set-system hypergraphs is shown not to be cartesian closed and lacks enough projective objects, unlike the category of directed multigraphs (i.e. quivers). The category of incidence hypergraphs is introduced as a graph-like remedy for the set-system issues so that hypergraphs may be studied by their locally graphic behavior via homomorphisms that allow an edge of the domain to be mapped into a subset of an edge in the codomain. Moreover, it is shown that the category of quivers embeds into the category of incidence hypergraphs via a logical functor that is the inverse image of an essential geometric morphism between the topoi. Consequently, the quiver exponential is shown to be simply represented using incidence hypergraph homomorphisms.
The box product and its associated box exponential are characterized for the categories of quivers (directed graphs), multigraphs, set system hypergraphs, and incidence hypergraphs. It is shown that only the quiver case of the box exponential can be
An oriented hypergraph is an oriented incidence structure that allows for the generalization of graph theoretic concepts to integer matrices through its locally signed graphic substructure. The locally graphic behaviors are formalized in the subobjec
When working with distant collaborators on the same documents, one often uses a version control system, which is a program tracking the history of files and helping importing modifications brought by others as patches. The implementation of such a sy
We propose a categorical foundation for the connection between pure and mixed states in quantum information and quantum computation. The foundation is based on distributive monoidal categories. First, we prove that the category of all quantum chann
A family ${A_{0},ldots,A_{d}}$ of $k$-element subsets of $[n]={1,2,ldots,n}$ is called a simplex-cluster if $A_{0}capcdotscap A_{d}=varnothing$, $|A_{0}cupcdotscup A_{d}|le2k$, and the intersection of any $d$ of the sets in ${A_{0},ldots,A_{d}}$ is n