ﻻ يوجد ملخص باللغة العربية
The box product and its associated box exponential are characterized for the categories of quivers (directed graphs), multigraphs, set system hypergraphs, and incidence hypergraphs. It is shown that only the quiver case of the box exponential can be characterized via homs entirely within their own category. An asymmetry in the incidence hypergraphic box product is rectified via an incidence dual-closed generalization that effectively treats vertices and edges as real and imaginary parts of a complex number, respectively. This new hypergraphic box product is shown to have a natural interpretation as the canonical box product for graphs via the bipartite representation functor, and its associated box exponential is represented as homs entirely in the category of incidence hypergraphs; with incidences determined by incidence-prism mapping. The evaluation of the box exponential at paths is shown to correspond to the entries in half-powers of the oriented hypergraphic signless Laplacian matrix.
An oriented hypergraph is an oriented incidence structure that allows for the generalization of graph theoretic concepts to integer matrices through its locally signed graphic substructure. The locally graphic behaviors are formalized in the subobjec
This paper considers the difficulty in the set-system approach to generalizing graph theory. These difficulties arise categorically as the category of set-system hypergraphs is shown not to be cartesian closed and lacks enough projective objects, unl
The graph entropy describes the structural information of graph. Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs ar
Let $mathcal{G}$ be a $k$-uniform hypergraph, $mathcal{L}_{mathcal{G}}$ be its Laplacian tensor. And $beta( mathcal{G})$ denotes the maximum number of linearly independent nonnegative eigenvectors of $mathcal{L}_{mathcal{G}}$ corresponding to the eig
An oriented hypergraph is an oriented incidence structure that extends the concepts of signed graphs, balanced hypergraphs, and balanced matrices. We introduce hypergraphic structures and techniques that generalize the circuit classification of the s