ﻻ يوجد ملخص باللغة العربية
Investigating translationally invariant qudit spin chains with a low local dimension, we ask what is the best possible tradeoff between the scaling of the entanglement entropy of a large block and the inverse-polynomial scaling of the spectral gap. Restricting ourselves to Hamiltonians with a rewriting interaction, we find the pair-flip model, a family of spin chains with nearest neighbor, translationally invariant, frustration-free interactions, with a very entangled ground state and an inverse-polynomial spectral gap. For a ground state in a particular invariant subspace, the entanglement entropy across a middle cut scales as $log n$ for qubits (it is equivalent to the XXX model), while for qutrits and higher, it scales as $sqrt{n}$. Moreover, we conjecture that this particular ground state can be made unique by adding a small translationally-invariant perturbation that favors neighboring letter pairs, adding a small amount of frustration, while retaining the entropy scaling.
We consider Taylor dispersion for tracer particles in micro-fluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls becom
In 1987, Affleck, Kennedy, Lieb, and Tasaki introduced the AKLT spin chain and proved that it has a spectral gap above the ground state. Their concurrent conjecture that the two-dimensional AKLT model on the hexagonal lattice is also gapped remains o
Open quantum systems with chiral interactions can be realized by coupling atoms to guided radiation modes in waveguides or optical fibres. In their steady state these systems can feature intricate many-body phases such as entangled dark states, but t
The theory of entanglement provides a fundamentally new language for describing interactions and correlations in many body systems. Its vocabulary consists of qubits and entangled pairs, and the syntax is provided by tensor networks. We review how ma
We construct a model of short-range interacting Ising spins on a translationally invariant two-dimensional lattice that mimics a reversible circuit that multiplies or factorizes integers, depending on the choice of boundary conditions. We prove that,