ترغب بنشر مسار تعليمي؟ اضغط هنا

Large prime factors on short intervals

67   0   0.0 ( 0 )
 نشر من قبل Jori Merikoski
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Jori Merikoski




اسأل ChatGPT حول البحث

We show that for all large enough $x$ the interval $[x,x+x^{1/2}log^{1.39}x]$ contains numbers with a prime factor $p > x^{18/19}.$ Our work builds on the previous works of Heath-Brown and Jia (1998) and Jia and Liu (2000) concerning the same problem for the longer intervals $[x,x+x^{1/2+epsilon}].$ We also incorporate some ideas from Harmans book `Prime-detecting sieves (2007). The main new ingredient that we use is the iterative argument of Matomaki and Radziwi{l}{l}(2016) for bounding Dirichlet polynomial mean values, which is applied to obtain Type II information. This allows us to take shorter intervals than in the above-mentioned previous works. We have also had to develop ideas to avoid losing any powers of $log x$ when applying Harmans sieve method.



قيم البحث

اقرأ أيضاً

Stewart (2013) proved that the biggest prime divisor of the $n$th term of a Lucas sequence of integers grows quicker than $n$, answering famous questions of ErdH{o}s and Schinzel. In this note we obtain a fully explicit and, in a sense, uniform version of Stewarts result.
We show that as $Tto infty$, for all $tin [T,2T]$ outside of a set of measure $mathrm{o}(T)$, $$ int_{-(log T)^{theta}}^{(log T)^{theta}} |zeta(tfrac 12 + mathrm{i} t + mathrm{i} h)|^{beta} mathrm{d} h = (log T)^{f_{theta}(beta) + mathrm{o}(1)}, $$ f or some explicit exponent $f_{theta}(beta)$, where $theta > -1$ and $beta > 0$. This proves an extended version of a conjecture of Fyodorov and Keating (2014). In particular, it shows that, for all $theta > -1$, the moments exhibit a phase transition at a critical exponent $beta_c(theta)$, below which $f_theta(beta)$ is quadratic and above which $f_theta(beta)$ is linear. The form of the exponent $f_theta$ also differs between mesoscopic intervals ($-1<theta<0$) and macroscopic intervals ($theta>0$), a phenomenon that stems from an approximate tree structure for the correlations of zeta. We also prove that, for all $tin [T,2T]$ outside a set of measure $mathrm{o}(T)$, $$ max_{|h| leq (log T)^{theta}} |zeta(tfrac{1}{2} + mathrm{i} t + mathrm{i} h)| = (log T)^{m(theta) + mathrm{o}(1)}, $$ for some explicit $m(theta)$. This generalizes earlier results of Najnudel (2018) and Arguin et al. (2019) for $theta = 0$. The proofs are unconditional, except for the upper bounds when $theta > 3$, where the Riemann hypothesis is assumed.
88 - Xianchang Meng 2018
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conject ured that the difference of the summatory functions should attain a constant sign for all sufficiently large $x$. In this paper, we provide strong evidence for Greg Martins conjecture. Moreover, we derive a general theorem for arithmetic functions from the Selberg class.
148 - Pratik Rathore 2018
We call an odd positive integer $n$ a $textit{Descartes number}$ if there exist positive integers $k,m$ such that $n = km$ and begin{equation} sigma(k)(m+1) = 2km end{equation} Currently, $mathcal{D} = 3^{2}7^{2}11^{2}13^{2}22021$ is the only kno wn Descartes number. In $2008$, Banks et al. proved that $mathcal{D}$ is the only cube-free Descartes number with fewer than seven distinct prime factors. In the present paper, we extend the methods of Banks et al. to show that there is no cube-free Descartes number with seven distinct prime factors.
169 - R. C. Baker , A. J. Irving 2015
By combining a sieve method of Harman with the work of Maynard and Tao we show that $$liminf_{nrightarrow infty}(p_{n+m}-p_n)ll exp(3.815m).$$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا