We use Maynards methods to show that there are bounded gaps between primes in the sequence ${lfloor nalpharfloor}$, where $alpha$ is an irrational number of finite type. In addition, given a superlinear function $f$ satisfying some properties describ
ed by Leitmann, we show that for all $m$ there are infinitely many bounded intervals containing $m$ primes and at least one integer of the form $lfloor f(q)rfloor$ with $q$ a positive integer.
Let p be a prime number, and let K be a number field. For p=2, assume moreover K totally imaginary. In this note we prove the existence of asymptotically good extensions L{K of cohomological dimension 2 in which infinitely many primes split completel
y. Our result is inspired by a recent work of Hajir, Maire, and Ramakrishna [7].
We obtain an upper bound for the number of pairs $ (a,b) in {Atimes B} $ such that $ a+b $ is a prime number, where $ A, B subseteq {1,...,N }$ with $|A||B| , gg frac{N^2}{(log {N})^2}$, $, N geq 1$ an integer. This improves on a bound given by Balog, Rivat and Sarkozy.
In this research paper, relationship between every Mersenne prime and certain Natural numbers is explored. We begin by proving that every Mersenne prime is of the form {4n + 3,for some integer n} and generalize the result to all powers of 2. We also
tabulate and show their relationship with other whole numbers up to 10. A number of minor results are also proved. Based on these results, approaches to determine the cardinality of Mersenne primes are discussed.