ترغب بنشر مسار تعليمي؟ اضغط هنا

Log-normal flux distribution of bright Fermi blazars

80   0   0.0 ( 0 )
 نشر من قبل Zahir Shah Mr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the $gamma$-ray flux distribution study on the brightest blazars which are observed by the emph{Fermi}-LAT. We selected 50 brightest blazars based on the maximum number of detection reported in the LAT third AGN catalog. We performed standard unbinned maximum likelihood analysis on the LAT data during the period between August 2008 and December 2016, in order to obtain the average monthly flux. After quality cuts, blazars for which at least 90% of the total flux was survived were selected for the further study, and this includes 19 FSRQs and 19 BL Lacs. The Anderson-Darling and $chi^2$ tests suggest that the integrated monthly flux follow a log-normal distribution for all sources, except for three FSRQs for which neither a normal nor a log-normal distribution was preferred. A double log-normal flux distribution tendency were observed in these sources, though it has to be confirmed with improved statistics. We also found that, the standard deviation of the log-normal flux distribution increases with the mean spectral index of the blazar, and can be fitted with a line of slope 0.24$pm$0.04. We repeat our study on three additional brightest unclassified blazars to identify their flux distribution properties. Based on the features of their log-normal flux distribution, we infer these unclassified blazars may be closely associated with FSRQs. We also highlight that considering the log-normal behavior of the flux distribution of blazars, averaging their long term flux in linear scale can largely under estimate the nominal flux and this discrepancy can propagate down to the estimation of source parameters through spectral modeling.



قيم البحث

اقرأ أيضاً

(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
We report on VERITAS very-high-energy (VHE; E>100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ra y absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.
136 - G. Ghisellini 2009
We studied all blazars of known redshift detected by the Fermi satellite during its first three months survey. For the majority of them, pointed Swift observations ensures a good multiwavelength coverage, enabling us to to reliably construct their sp ectral energy distributions (SED). We model the SEDs using a one-zone leptonic model and study the distributions of the derived interesting physical parameters as a function of the observed gamma-ray luminosity. We confirm previous findings concerning the relation of the physical parameters with source luminosity which are at the origin of the blazar sequence. The SEDs allow to estimate the luminosity of the accretion disk for the majority of broad emitting line blazars, while for the line-less BL Lac objects in the sample upper limits can be derived. We find a positive correlation between the jet power and the luminosity of the accretion disk in broad line blazars. In these objects we argue that the jet must be proton-dominated, and that the total jet power is of the same order of (or slightly larger than) the disk luminosity. We discuss two alternative scenarios to explain this result.
We present the results of flux density, spectral index, and polarization intra-night monitoring studies of a sample of eight optically bright blazars, carried out by employing several small to moderate aperture (0.4,m to 1.5,m diameter) telescopes fi tted with CCDs and polarimeters located in Europe, India, and Japan. The duty cycle of flux variability for the targets is found to be $sim 45$ percent, similar to that reported in earlier studies. The computed two-point spectral indices are found to be between 0.65 to 1.87 for our sample, comprised of low- and intermediate frequency peaked blazars, with one exception; they are also found to be statistically variable for about half the instances where `confirmed variability is detected in flux density. In the analysis of the spectral evolution of the targets on hourly timescale, a counter-clockwise loop (soft-lagging) is noted in the flux-spectral index plane on two occasions, and in one case a clear spectral flattening with the decreasing flux is observed. In our data set, we also observe a variety of flux-polarization degree variability patterns, including instances with a relatively straightforward anti-correlation, correlation, or counter-clockwise looping. These changes are typically reflected in the flux-polarization angle plane: the anti-correlation between the flux and polarization degree is accompanied by an anti-correlation between the polarization angle and flux, while the counter-clockwise flux-PD looping behaviour is accompanied by a clockwise looping in the flux-polarization angle representation. We discuss our findings in the framework of the internal shock scenario for blazar sources.
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. One class of extragalactic sources which may produce such high-energy neutrinos are blazars. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue (2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the detection of individual sources. In contrast to previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalogue. No significant excess is observed and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of the 2LAC blazars to the observed astrophysical neutrino flux to be $27 %$ or less between around 10 TeV and 2 PeV, assuming equipartition of flavours at Earth and a single power-law spectrum with a spectral index of $-2.5$. We can still exclude that the 2LAC blazars (and sub-populations) emit more than $50 %$ of the observed neutrinos up to a spectral index as hard as $-2.2$ in the same energy range. Our result takes into account that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC $gamma$-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا