ترغب بنشر مسار تعليمي؟ اضغط هنا

VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

362   0   0.0 ( 0 )
 نشر من قبل Amy Furniss
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on VERITAS very-high-energy (VHE; E>100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.



قيم البحث

اقرأ أيضاً

The HAWC (High Altitude Water Cherenkov) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100~GeV) gamma-ray sources based on 507 days of observation. Among these, there are nineteen sources that are not associa ted with previously known TeV sources. We have studied fourteen of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1~TeV-30~TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected fourteen new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected GeV gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various ground-based optical and radio telescopes. We simulate the dynamic spectral energy distributions (SEDs) within the framework of a multi-slice, time-dependent leptonic jet model for blazars, with radiation feedback, in the internal shock scenario. We use the physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We discuss the role of intrinsic parameters and the interplay between synchrotron and inverse Compton radiation processes responsible for producing the resultant SEDs.
108 - M. Kreter , A. Gokus , F. Krau{ss} 2020
High-$z$ blazars (z $geq 2.5$) are the most powerful class of persistent $gamma$-ray sources in the Universe. These objects possess the highest jet powers and luminosities and have black hole masses often in excess of $10^9$ solar masses. In addition , high-$z$ blazars are important cosmological probes and serve as test objects for blazar evolution models. Due to their large distance, their high-energy emission typically peaks below the GeV range, which makes them difficult to study with Fermi/LAT. Therefore, only the very brightest objects are detectable and, to date, only a small number of high-z blazars have been detected with Fermi/LAT. In this work, we studied the monthly binned long-term $gamma$-ray emission of a sample of 176 radio and optically detected blazars that have not been reported as known $gamma$-ray sources in the 3FGL catalog. In order to account for false-positive detections, we calculated monthly Fermi/LAT light curves for a large sample of blank sky positions and derived the number of random fluctuations that we expect at various test statistic (TS) levels. For a given blazar, a detection of TS > 9 in at least one month is expected $sim 15%$ of the time. Although this rate is too high to secure detection of an individual source, half of our sample shows such single-month $gamma$-ray activity, indicating a population of high-energy blazars at distances of up to z=5.2. Multiple TS > 9 monthly detections are unlikely to happen by chance, and we have detected several individual new sources in this way, including the most distant $gamma$-ray blazar, BZQ J1430+4204 (z = 4.72). Finally, two new $gamma$-ray blazars at redshifts of z = 3.63 and z = 3.11 are unambiguously detected via very significant (TS > 25) flares in individual monthly time bins.
We present the results of the $gamma$-ray flux distribution study on the brightest blazars which are observed by the emph{Fermi}-LAT. We selected 50 brightest blazars based on the maximum number of detection reported in the LAT third AGN catalog. We performed standard unbinned maximum likelihood analysis on the LAT data during the period between August 2008 and December 2016, in order to obtain the average monthly flux. After quality cuts, blazars for which at least 90% of the total flux was survived were selected for the further study, and this includes 19 FSRQs and 19 BL Lacs. The Anderson-Darling and $chi^2$ tests suggest that the integrated monthly flux follow a log-normal distribution for all sources, except for three FSRQs for which neither a normal nor a log-normal distribution was preferred. A double log-normal flux distribution tendency were observed in these sources, though it has to be confirmed with improved statistics. We also found that, the standard deviation of the log-normal flux distribution increases with the mean spectral index of the blazar, and can be fitted with a line of slope 0.24$pm$0.04. We repeat our study on three additional brightest unclassified blazars to identify their flux distribution properties. Based on the features of their log-normal flux distribution, we infer these unclassified blazars may be closely associated with FSRQs. We also highlight that considering the log-normal behavior of the flux distribution of blazars, averaging their long term flux in linear scale can largely under estimate the nominal flux and this discrepancy can propagate down to the estimation of source parameters through spectral modeling.
We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between January 2008 and February 2011, resulting in 56.2 hours of good qualit y pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as 5.2 +/- 1.1_stat +/- 2.6_sys * 10^-12 photons cm^-2 s^-1 above 200 GeV, equivalent to approximately 2% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with an photon index of Gamma 3.4 +/- 0.5_stat +/- 0.3_sys and a flux normalization of 1.6 +/- 0.3_stat +/- 0.8_sys * 10^-11 photons cm^-2 s^-1 at 300 GeV. We also present multiwavelength results taken in the optical (MDM), X-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا