ﻻ يوجد ملخص باللغة العربية
Our detailed Angle Resolved Photoemission Spectroscopy (ARPES) study of $2H$-TaS$_2$, a canonical incommensurate charge density wave (CDW) material, illustrates pronounced many-body renormalization in the system, which is manifested by the presence of multiple kink structures in the electronic dispersions. Temperature-dependent measurements reveal that these kink structures persist even at temperatures higher than the charge density wave transition temperature $it{T}_{text{cdw}},$ and the energy locations of the kinks are practically temperature-independent. Correlating kink energies with the published Raman scattering data and the theoretically calculated phonon spectrum of $2H$-TaS$_2$, we conclude phononic mechanism for these kinks. We have also detected momentum-anisotropy in the band renormalization, which in turn indicates momentum-dependence of the electron-phonon coupling of the system.
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe$_2$. We observe a complete softening of a transverse optic phonon at the L point, i.e. q = (0.5, 0, 0.5), at T ~ T_{CDW}. Renormal
We investigate the electronic structure of the 2H and 3R polytypes of NbS$_2$. The Fermi surfaces measured by angle-resolved photoemission spectroscopy show a remarkable difference in size, reflecting a significantly increased band filling in 3R-Nb$_
Using time- and angle-resolved photoemission spectroscopy, we study the response of metallic single layer TaS$_2$ in the 1H structural modification to the generation of excited carriers by a femtosecond laser pulse. A complex interplay of band struct
The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single layer transition metal dichalchogenides such as MoS$_2$ or WS$_2$. This permits a direct comparison of the electron-phonon cou
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab