ﻻ يوجد ملخص باللغة العربية
Using time- and angle-resolved photoemission spectroscopy, we study the response of metallic single layer TaS$_2$ in the 1H structural modification to the generation of excited carriers by a femtosecond laser pulse. A complex interplay of band structure modifications and electronic temperature increase is observed and analyzed by direct fits of model spectral functions to the two-dimensional (energy and $k$-dependent) photoemission data. Upon excitation, the partially occupied valence band is found to shift to higher binding energies by up to 150 meV, accompanied by electronic temperatures exceeding 3000~K. These observations are explained by a combination of temperature-induced shifts of the chemical potential, as well as temperature-induced changes in static screening. Both contributions are evaluated in a semi-empirical tight-binding model. The shift resulting from a change in the chemical potential is found to be dominant.
Strongly correlated systems exhibit intriguing properties caused by intertwined microscopic in- teractions that are hard to disentangle in equilibrium. Employing non-equilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional tr
The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single layer transition metal dichalchogenides such as MoS$_2$ or WS$_2$. This permits a direct comparison of the electron-phonon cou
Our detailed Angle Resolved Photoemission Spectroscopy (ARPES) study of $2H$-TaS$_2$, a canonical incommensurate charge density wave (CDW) material, illustrates pronounced many-body renormalization in the system, which is manifested by the presence o
The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as LCO{}, the presence of a weak
1T-TaS$_2$ is a prototypical charge-density-wave (CDW) system with a Mott insulating ground state. Usually, a Mott insulator is accompanied by an antiferromagnetic state. However, the antiferromagnetic order had never been observed in 1T-TaS$_2$. Her