ﻻ يوجد ملخص باللغة العربية
Path planning is important for the autonomy of Unmanned Aerial Vehicle (UAV), especially for scheduling UAV delivery. However, the operating environment of UAVs is usually uncertain and dynamic. Without proper planning, collisions may happen where multiple UAVs are congested. Besides, there may also be temporary no-fly zone setup by authorities that makes airspace unusable. Thus, proper pre-departure planning that avoids such places is needed. In this paper, we formulate this problem into a Constraint Satisfaction Problem to find a collision-free shortest path on a dynamic graph. We propose a collision-free path planning algorithm that is based on A* algorithm. The main novelty is that we invent a heuristic function that also considers waiting time. We later show that, with added waiting penalty, the proposed algorithm is optimal because the heuristic is admissible. Implementation of this algorithm simulates UAV delivery using Singapores airspace structure. Our simulation exhibits desirable runtime performance. Using the proposed algorithm, the percentage of collision-free routes decreases as number of requests per unit area increases, and this percentage drops significantly at boundary value. Our empirical analysis could aid the decision-making of no-fly zone policy and infrastructure of UAV delivery.
Visual object tracking, which is representing a major interest in image processing field, has facilitated numerous real world applications. Among them, equipping unmanned aerial vehicle (UAV) with real time robust visual trackers for all day aerial m
As unmanned aerial vehicles (UAVs) become more accessible with a growing range of applications, the potential risk of UAV disruption increases. Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with
Autonomous Underwater Vehicle-Manipulator systems (AUVMS) is a new tool for ocean exploration, the AUVMS path planning problem is addressed in this paper. AUVMS is a high dimension system with a large difference in inertia distribution, also it works
Path planning and collision avoidance are challenging in complex and highly variable environments due to the limited horizon of events. In literature, there are multiple model- and learning-based approaches that require significant computational reso
Aerial vehicles with collision resilience can operate with more confidence in environments with obstacles that are hard to detect and avoid. This paper presents the methodology used to design a collision resilient aerial vehicle with icosahedron tens