ترغب بنشر مسار تعليمي؟ اضغط هنا

UAV-ReID: A Benchmark on Unmanned Aerial Vehicle Re-identification

72   0   0.0 ( 0 )
 نشر من قبل Hubert P. H. Shum
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As unmanned aerial vehicles (UAVs) become more accessible with a growing range of applications, the potential risk of UAV disruption increases. Recent development in deep learning allows vision-based counter-UAV systems to detect and track UAVs with a single camera. However, the coverage of a single camera is limited, necessitating the need for multicamera configurations to match UAVs across cameras - a problem known as re-identification (reID). While there has been extensive research on person and vehicle reID to match objects across time and viewpoints, to the best of our knowledge, there has been no research in UAV reID. UAVs are challenging to re-identify: they are much smaller than pedestrians and vehicles and they are often detected in the air so appear at a greater range of angles. Because no UAV data sets currently use multiple cameras, we propose the first new UAV re-identification data set, UAV-reID, that facilitates the development of machine learning solutions in this emerging area. UAV-reID has two settings: Temporally-Near to evaluate performance across views to assist tracking frameworks, and Big-to-Small to evaluate reID performance across scale and to allow early reID when UAVs are detected from a long distance. We conduct a benchmark study by extensively evaluating different reID backbones and loss functions. We demonstrate that with the right setup, deep networks are powerful enough to learn good representations for UAVs, achieving 81.9% mAP on the Temporally-Near setting and 46.5% on the challenging Big-to-Small setting. Furthermore, we find that vision transformers are the most robust to extreme variance of scale.



قيم البحث

اقرأ أيضاً

Unmanned Aerial Vehicles (UAV) can pose a major risk for aviation safety, due to both negligent and malicious use. For this reason, the automated detection and tracking of UAV is a fundamental task in aerial security systems. Common technologies for UAV detection include visible-band and thermal infrared imaging, radio frequency and radar. Recent advances in deep neural networks (DNNs) for image-based object detection open the possibility to use visual information for this detection and tracking task. Furthermore, these detection architectures can be implemented as backbones for visual tracking systems, thereby enabling persistent tracking of UAV incursions. To date, no comprehensive performance benchmark exists that applies DNNs to visible-band imagery for UAV detection and tracking. To this end, three datasets with varied environmental conditions for UAV detection and tracking, comprising a total of 241 videos (331,486 images), are assessed using four detection architectures and three tracking frameworks. The best performing detector architecture obtains an mAP of 98.6% and the best performing tracking framework obtains a MOTA of 96.3%. Cross-modality evaluation is carried out between visible and infrared spectrums, achieving a maximal 82.8% mAP on visible images when training in the infrared modality. These results provide the first public multi-approach benchmark for state-of-the-art deep learning-based methods and give insight into which detection and tracking architectures are effective in the UAV domain.
85 - Tianjiao Li , Jun Liu , Wei Zhang 2021
Human behavior understanding with unmanned aerial vehicles (UAVs) is of great significance for a wide range of applications, which simultaneously brings an urgent demand of large, challenging, and comprehensive benchmarks for the development and eval uation of UAV-based models. However, existing benchmarks have limitations in terms of the amount of captured data, types of data modalities, categories of provided tasks, and diversities of subjects and environments. Here we propose a new benchmark - UAVHuman - for human behavior understanding with UAVs, which contains 67,428 multi-modal video sequences and 119 subjects for action recognition, 22,476 frames for pose estimation, 41,290 frames and 1,144 identities for person re-identification, and 22,263 frames for attribute recognition. Our dataset was collected by a flying UAV in multiple urban and rural districts in both daytime and nighttime over three months, hence covering extensive diversities w.r.t subjects, backgrounds, illuminations, weathers, occlusions, camera motions, and UAV flying attitudes. Such a comprehensive and challenging benchmark shall be able to promote the research of UAV-based human behavior understanding, including action recognition, pose estimation, re-identification, and attribute recognition. Furthermore, we propose a fisheye-based action recognition method that mitigates the distortions in fisheye videos via learning unbounded transformations guided by flat RGB videos. Experiments show the efficacy of our method on the UAV-Human dataset. The project page: https://github.com/SUTDCV/UAV-Human
In this work, we construct a large-scale dataset for vehicle re-identification (ReID), which contains 137k images of 13k vehicle instances captured by UAV-mounted cameras. To our knowledge, it is the largest UAV-based vehicle ReID dataset. To increas e intra-class variation, each vehicle is captured by at least two UAVs at different locations, with diverse view-angles and flight-altitudes. We manually label a variety of vehicle attributes, including vehicle type, color, skylight, bumper, spare tire and luggage rack. Furthermore, for each vehicle image, the annotator is also required to mark the discriminative parts that helps them to distinguish this particular vehicle from others. Besides the dataset, we also design a specific vehicle ReID algorithm to make full use of the rich annotation information. It is capable of explicitly detecting discriminative parts for each specific vehicle and significantly outperforms the evaluated baselines and state-of-the-art vehicle ReID approaches.
Visual object tracking, which is representing a major interest in image processing field, has facilitated numerous real world applications. Among them, equipping unmanned aerial vehicle (UAV) with real time robust visual trackers for all day aerial m aneuver, is currently attracting incremental attention and has remarkably broadened the scope of applications of object tracking. However, prior tracking methods have merely focused on robust tracking in the well-illuminated scenes, while ignoring trackers capabilities to be deployed in the dark. In darkness, the conditions can be more complex and harsh, easily posing inferior robust tracking or even tracking failure. To this end, this work proposed a novel discriminative correlation filter based tracker with illumination adaptive and anti dark capability, namely ADTrack. ADTrack firstly exploits image illuminance information to enable adaptability of the model to the given light condition. Then, by virtue of an efficient and effective image enhancer, ADTrack carries out image pretreatment, where a target aware mask is generated. Benefiting from the mask, ADTrack aims to solve a dual regression problem where dual filters, i.e., the context filter and target focused filter, are trained with mutual constraint. Thus ADTrack is able to maintain continuously favorable performance in all-day conditions. Besides, this work also constructed one UAV nighttime tracking benchmark UAVDark135, comprising of more than 125k manually annotated frames, which is also very first UAV nighttime tracking benchmark. Exhaustive experiments are extended on authoritative daytime benchmarks, i.e., UAV123 10fps, DTB70, and the newly built dark benchmark UAVDark135, which have validated the superiority of ADTrack in both bright and dark conditions on a single CPU.
Vehicle Re-Identification (Re-ID) aims to identify the same vehicle across different cameras, hence plays an important role in modern traffic management systems. The technical challenges require the algorithms must be robust in different views, resol ution, occlusion and illumination conditions. In this paper, we first analyze the main factors hindering the Vehicle Re-ID performance. We then present our solutions, specifically targeting the dataset Track 2 of the 5th AI City Challenge, including (1) reducing the domain gap between real and synthetic data, (2) network modification by stacking multi heads with attention mechanism, (3) adaptive loss weight adjustment. Our method achieves 61.34% mAP on the private CityFlow testset without using external dataset or pseudo labeling, and outperforms all previous works at 87.1% mAP on the Veri benchmark. The code is available at https://github.com/cybercore-co-ltd/track2_aicity_2021.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا