ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of entangled atomic states by an analogue of the Dynamical Casimir Effect

160   0   0.0 ( 0 )
 نشر من قبل Karsten Lange
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the boundary conditions of the quantum vacuum are changed in time, quantum field theory predicts that real, observable particles can be created in the initially empty modes. Here, we realize this effect by changing the boundary conditions of a spinor Bose-Einstein condensate, which yields a population of initially unoccupied spatial and spin excitations. We prove that the excitations are created as entangled excitation pairs by certifying continuous-variable entanglement within the many-particle output state.



قيم البحث

اقرأ أيضاً

We develop an open-system dynamical theory of the Casimir interaction between coherent atomic waves and a material surface. The system --- the external atomic waves --- disturbs the environment --- the electromagnetic field and the atomic dipole degr ees of freedom --- in a non- local manner by leaving footprints on distinct paths of the atom interferometer. This induces a non-local dynamical phase depending simultaneously on two distinct paths, beyond usual atom-optics methods, and comparable to the local dynamical phase corrections. Non-local and local atomic phase coherences are thus equally important to capture the interplay between the external atomic motion and the Casimir interaction. Such dynamical phases are obtained for finite-width wavepackets by developing a diagrammatic expansion of the disturbed environment quantum state.
We analyse here the pseudo-Hermitian Dynamical Casimir effect, proposing a non-Hermitian version of the effective Laws Hamiltonian used to describe the phenomenon. We verify that the average number of created photons can be substantially increased, a result which calls the attention to the possibility of engineering the time-dependent non-Hermitian Hamiltonian we have assumed. Given the well-known difficulty in detecting the Casimir photon production, the present result reinforces the importance of pseudo-Hermitian quantum mechanics as a new chapter of quantum theory and an important tool for the amplification of Hermitian processes such as the degree of squeezing of quantum states.
We describe the preparation of atom-number states with strongly interacting bosons in one dimension, or spin-polarized fermions. The procedure is based on a combination of weakening and squeezing of the trapping potential. For the resulting state, th e full atom number distribution is obtained. Starting with an unknown number of particles $N_i$, we optimize the sudden change in the trapping potential which leads to the Fock state of $N_f$ particles in the final trap. Non-zero temperature effects as well as different smooth trapping potentials are analyzed. A simple criterion is provided to ensure the robust preparation of the Fock state for physically realistic traps.
Open quantum systems with chiral interactions can be realized by coupling atoms to guided radiation modes in waveguides or optical fibres. In their steady state these systems can feature intricate many-body phases such as entangled dark states, but t heir detection and characterization remains a challenge. Here we show how such collective phenomena can be uncovered through monitoring the record of photons emitted into the guided modes. This permits the identification of dark entangled states but furthermore offers novel capabilities for probing complex dynamical behavior, such as the coexistence of a dark entangled and a mixed phase. Our results are of direct relevance for current experiments, as they provide a framework for probing, characterizing and classifying dynamical features of chiral light-matter systems.
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boun dary. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of the cavity boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا