ترغب بنشر مسار تعليمي؟ اضغط هنا

UV Light Detection from CdS Nanocrystal Sensitized Graphene Photodetectors at kHz Frequencies

113   0   0.0 ( 0 )
 نشر من قبل Davide Spirito
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fabricated UV-sensitive photodetectors based on colloidal CdS nanocrystals and graphene. The nanocrystals act as a sensitizer layer that improves light harvesting leading to high responsivity of the detector. Despite the slow relaxation of the photogenerated charges in the nanocrystal film, faster processes allowed to detect pulses up to a repetition rate of 2 kHz. We have performed time-resolved analysis of the processes occurring in our hybrid system, and discuss possible photo-induced charge transfer mechanisms.



قيم البحث

اقرأ أيضاً

We measure graphene coplanar waveguides from direct current (DC) to 13.5GHz and show that the apparent resistance (in the presence of parasitic impedances) has an quadratic frequency dependence, but the intrinsic conductivity (without the influence o f parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current conductivity is the same as the DC value and the imaginary part~0. The graphene channel is modelled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time~2.1ps, highlighting the influence of alternating current (AC) electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analogue field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.
Graphenes high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultra-broadband photodetectors. However, the precise mechanism of phot odetection is still debated. Here, we report wavelength and polarization dependent measurements of metal-graphene-metal photodetectors. This allows us to quantify and control the relative contributions of both photo-thermo- and photoelectric effects, both contributing to the overall photoresponse. This paves the way for a more efficient photodetector design for ultra-fast operating speeds.
The combination of graphene with semiconductor materials in heterostructure photodetectors, has enabled amplified detection of femtowatt light signals using micron-scale electronic devices. Presently, the speed of such detectors is limited by long-li ved charge traps and impractical strategies, e.g. the use of large gate voltage pulses, have been employed to achieve bandwidths suitable for applications, such as video-frame-rate imaging. Here, we report atomically thin graphene-WS$_2$ heterostructure photodetectors encapsulated in an ionic polymer, which are uniquely able to operate at bandwidths up to 1.5 kHz, whilst maintaining internal gain as large as $10^6$. Highly mobile ions and a nanometre scale Debye length of the ionic polymer are used to screen charge traps and tune the Fermi level of graphene over an unprecedented range at the interface with WS$_2$. We observe a responsivity $R=10^6$ A W$^{-1}$ and detectivity $D^*=3.8times10^{11}$ Jones, approaching that of single photon counters. The combination of both high responsivity and fast response times makes these photodetectors suitable for video-frame-rate imaging applications.
Top-gated graphene transistors operating at high frequencies (GHz) have been fabricated and their characteristics analyzed. The measured intrinsic current gain shows an ideal 1/f frequency dependence, indicating an FET-like behavior for graphene tran sistors. The cutoff frequency fT is found to be proportional to the dc transconductance gm of the device. The peak fT increases with a reduced gate length, and fT as high as 26 GHz is measured for a graphene transistor with a gate length of 150 nm. The work represents a significant step towards the realization of graphene-based electronics for high-frequency applications.
Ultrafast and sensitive (noise equivalent power <1 nWHz-1/2) light-detection in the Terahertz (THz) frequency range (0.1-10 THz) and at room-temperature is key for applications such as time-resolved THz spectroscopy of gases, complex molecules and co ld samples, imaging, metrology, ultra-high-speed data communications, coherent control of quantum systems, quantum optics and for capturing snapshots of ultrafast dynamics, in materials and devices, at the nanoscale. Here, we report room-temperature THz nano-receivers exploiting antenna-coupled graphene field effect transistors integrated with lithographically-patterned high-bandwidth (~100 GHz) chips, operating with a combination of high speed (hundreds ps response time) and high sensitivity (noise equivalent power <120 pWHz-1/2) at 3.4 THz. Remarkably, this is achieved with various antenna and transistor architectures (single-gate, dual-gate), whose operation frequency can be extended over the whole 0.1-10 THz range, thus paving the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspective for targeting the aforementioned applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا