ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-thermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors

143   0   0.0 ( 0 )
 نشر من قبل Andrea Ferrari
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphenes high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultra-broadband photodetectors. However, the precise mechanism of photodetection is still debated. Here, we report wavelength and polarization dependent measurements of metal-graphene-metal photodetectors. This allows us to quantify and control the relative contributions of both photo-thermo- and photoelectric effects, both contributing to the overall photoresponse. This paves the way for a more efficient photodetector design for ultra-fast operating speeds.



قيم البحث

اقرأ أيضاً

We have fabricated UV-sensitive photodetectors based on colloidal CdS nanocrystals and graphene. The nanocrystals act as a sensitizer layer that improves light harvesting leading to high responsivity of the detector. Despite the slow relaxation of th e photogenerated charges in the nanocrystal film, faster processes allowed to detect pulses up to a repetition rate of 2 kHz. We have performed time-resolved analysis of the processes occurring in our hybrid system, and discuss possible photo-induced charge transfer mechanisms.
We investigate the optoelectronic response of a graphene interface junction, formed with bilayer and single-layer graphene, by photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gat e voltage. These measurements show that the generation of PC is by a photo-thermoelectric effect. The PC displays a factor of ~10 increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power has a linear dependence on the temperature, the inferred graphene thermal conductivity from temperature dependent measurements has a T^{1.5} dependence below ~100 K, which agrees with recent theoretical predictions.
122 - Moosa Hatami 2009
We present a semiclassical theory of spin-diffusion in a ferromagnetic metal subject to a temperature gradient. Spin-flip scattering can generate pure thermal spin currents by short-circuiting spin channels while suppressing spin accumulations. A the rmally induced spin density is locally generated when the energy dependence of the density of states is spin polarized.
In this paper we present a comprehensive model for the tunneling current of the metal-insulator-graphene heterostructure, based on the Bardeen Transfer Hamiltonian method, of the metal-insulator-graphene heterostructure. As a particular case we have studied the metal-graphene junction, unveiling the role played by different electrical and physical parameters in determining the differential contact resistance.
We report a systematic study on Edelstein magnetoresistance (Edelstein MR) in Co25Fe75/Cu/Bi2O3 heterostructures with a strong spin-orbit interaction at the Cu/Bi2O3 interface. We succeed in observing a significant dependence of the Edelstein MR on b oth Cu layer thickness and temperature, and also develop a general analytical model considering distinct bulk and interface contributions on spin relaxation. Our analysis, based on the above model, quantitatively illustrates a unique property of the spin transport near the Rashba interface, revealing a prominent role of the spin relaxation process by determining the ratios of the spin relaxation inside and outside the interface. We further find the characteristic spin transport is unaffected by temperature. Our results provide an essential tool for exploring the transport in a system with spin-momentum-locked two-dimensional states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا