ﻻ يوجد ملخص باللغة العربية
We present the detection of neutral atomic carbon CI(3 P1 - 3 P0 ) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of $2.4 times 10^{-5}$ predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by $sim$ 4 km/s from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be $1.1 times 10^{19}$ cm$^{-2}$. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.
Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the
We model the synthesis of molecules and dust in the inner wind of the oxygen-rich Mira-type star IK Tau, by considering the effects of periodic shocks induced by the stellar pulsation on the gas, and by following the non-equilibrium chemistry in the
Phosphorus-bearing compounds have only been studied in the circumstellar environments (CSEs) of the asymptotic giant branch (AGB) star IRC +10216 and the protoplanetary nebula CRL 2688, both C-rich objects, and the O-rich red supergiant VY CMa. The c
Using ALMA observations of $^{12}$CO(2-1), $^{28}$SiO(5-4) and $^{32}$SO$_2$(16$_{6,10}$-17$_{5,13}$) emissions of the circumstellar envelope of AGB star EP Aqr, we describe the morpho-kinematics governing the nascent wind. Main results are: 1) Two n
We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmos