ترغب بنشر مسار تعليمي؟ اضغط هنا

3D maps of interstellar dust in the Local Arm: using $Gaia$, 2MASS and APOGEE-DR14

115   0   0.0 ( 0 )
 نشر من قبل Rosine Lallement
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaia data and stellar surveys open the way to the construction of detailed 3D maps of the Galactic interstellar (IS) dust based on the synthesis of star distances and extinctions. Reliable extinction measurements require very accurate photometric calibrations. We show the first step of an iterative process linking 3D dust maps and photometric calibrations and improving them simultaneously. Our previous 3D map of nearby IS dust was used to select low reddening SDSS/APOGEE-DR14 red giants, and this database served for an empirical effective temperature- and metallicity-dependent photometric calibration in the Gaia G and 2MASS Ks bands. This calibration has been combined with Gaia G-band empirical extinction coefficients recently published, G, J and Ks photometry and APOGEE atmospheric parameters to derive the extinction of a large fraction of the survey targets. Distances were estimated independently using isochrones and the magnitude-independent extinction K(J-Ks). This new dataset has been merged with the one used for the earlier version of dust map. A new Bayesian inversion of distance-extinction pairs has been performed to produce an updated 3D map. We present several properties of the new map. Its comparison with 2D dust emission reveals that all large dust shells seen in emission at mid- and high-latitude are closer than 300pc. The updated distribution constrains the well debated, X-ray bright North Polar Spur to originate beyond 800 pc. We use the Orion region to illustrate additional details and distant clouds. On the large scale the map reveals a complex structure of the Local Arm. 2 to 3 kpc-long chains of clouds appear in planes tilted by 15 deg with respect to the Galactic plane. A series of cavities oriented along a l=60-240deg axis crosses the Arm. (http://stilism.obspm.fr)



قيم البحث

اقرأ أيضاً

Gaia data are revolutionizing our knowledge of the evolutionary history of the Milky Way. 3D maps of the interstellar dust provide complementary information and are a tool for a wide range of uses. We aimed at building 3D maps of the dust in the Loca l arm and surrounding regions. To do so, Gaia DR2 photometric data were combined with 2MASS measurements to derive extinction towards stars that possess accurate photometry and relative uncertainties on DR2 parallaxes smaller than 20%. We applied to the extinctions a new hierarchical inversion algorithm adapted to large datasets and to a inhomogeneous target distribution. Each step associates regularized Bayesian
176 - Rosine Lallement 2014
Inversion of interstellar gas or dust columns measured along the path to stars distributed in distance and direction allows reconstructing the distribution of interstellar matter (ISM) in 3D. A low resolution IS dust map based on the reddening of 23, 000 stars illustrates the potential of future maps. It reveals the location of the main IS clouds within $sim$1kpc and, owing to biases towards weakly reddened targets, regions devoid of IS matter. It traces the Local Bubble and neighboring cavities, including a giant, $geq$1000 pc long cavity located beyond the so-called $beta$CMa tunnel, bordered by the main constituents of the Gould belt (GB), the rotating and expanding ring of clouds and young stars, inclined by $sim$ 20$^{circ}$ to the galactic plane. From comparison with diffuse X-ray background and absorption data it appears that the giant cavity is filled with warm, ionized and dust-poor gas in addition to million K gas. This set of structures must reflect the main events that occurred in the past. It has been suggested that the Cretaceus-Tertiary mass extinction may be due to a gamma-ray burst (GRB) in the massive globular cluster (GC) 47 Tuc during its close encounter with the Sun $sim$70 Myrs ago. Given the mass, speed and size of 47 Tuc, wherever it crossed the Galactic plane it must have produced at the crossing site significant dynamical effects on the disk stars and IS clouds, and triggered star formation. Interestingly, first-order estimates suggest that the GB dynamics and age could match the consequences of the cluster crossing. Additionally, the giant ionized, dust-free cavity could be related to an intense flux of hard radiation, and dust-gas decoupling after the burst could explain the high variability and pattern of the D/H ratio in the nearby gaseous ISM. Future Gaia data should confirm or dismiss this hypothesis.
We present an overview of the distributions of 11 elemental abundances in the Milky Ways inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sa mple spans ~4000 stars with R_GC<4 kpc, enabling the most comprehensive study to date of these abundances and their variations within the innermost few kiloparsecs of the Milky Way. We describe the observed abundance patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to patterns in stars at the solar Galactic radius, and discuss possible trends with DR14/DR15 effective temperatures. We find that the position of the [Mg/Fe]-[Fe/H] knee is nearly constant with R_GC, indicating a well-mixed star-forming medium or high levels of radial migration in the early inner Galaxy. We quantify the linear correlation between pairs of elements in different subsamples of stars and find that these relationships vary; some abundance correlations are very similar between the alpha-rich and alpha-poor stars, but others differ significantly, suggesting variations in the metallicity dependencies of certain supernova yields. These empirical trends will form the basis for more detailed future explorations and for the refinement of model comparison metrics. That the inner Milky Way abundances appear dominated by a single chemical evolutionary track and that they extend to such high metallicities underscore the unique importance of this part of the Galaxy for constraining the ingredients of chemical evolution modeling and for improving our understanding of the evolution of the Galaxy as a whole.
We construct a dynamical model of the Milky Way disk from a data set, which combines Gaia EDR3 and APOGEE data throughout Galactocentric radii between $5.0leq Rleq19.5$ kpc. We make use of the spherically-aligned Jeans Anisotropic Method to model the stellar velocities and their velocity dispersions. Building upon our previous work, our model now is fitted to kinematic maps that have been extended to larger Galactocentric radii due to the expansion of our data set, probing the outer regions of the Galactic disk. Our best-fitting dynamical model suggests a logarithmic density slope of $alpha_{rm DM}=-1.602pm0.079_{rm syst}$ for the dark matter halo and a dark matter density of $rho_{rm DM}(R_{odot})=(8.92pm0.56_{rm syst})times 10^{-3}$ M$_{odot}$ pc$^{-3}$ ($0.339pm0.022_{rm syst}$ GeV cm$^{3}$). We estimate a circular velocity at the solar radius of $v_{rm circ}=(234.7pm1.7_{rm syst})$ km s$^{-1}$ with a decline towards larger radii. The total mass density is $rho_{rm tot}(R_{odot})$=$(0.0672pm0.0015_{rm syst})$ M$_{odot}$ pc$^{-3}$ with a slope of $alpha_{rm tot}$=$-2.367pm0.047_{rm syst}$ for $5leq Rleq19.5$ kpc and the total surface density is $Sigma(R{_odot}, |z|leq$ 1.1 kpc)=$(55.5pm1.7_{rm syst})$ M$_{odot}$ pc$^{-2}$. While the statistical errors are small, the error budget of the derived quantities is dominated by the 3 to 7 times larger systematic uncertainties. These values are consistent with our previous determination, but systematic uncertainties are reduced due to the extended data set covering a larger spatial extent of the Milky Way disk. Furthermore, we test the influence of non-axisymmetric features on our resulting model and analyze how a flaring disk model would change our findings.
We explore variations of the dust extinction law of the Milky Way by selecting stars from the Swift/UVOT Serendipitous Source Catalogue, cross-matched with Gaia DR2 and 2MASS to produce a sample of 10,452 stars out to ~4kpc with photometry covering a wide spectral window. The near ultraviolet passbands optimally encompass the 2175A bump, so that we can simultaneously fit the net extinction, quoted in the V band (A$_V$), the steepness of the wavelength dependence ($delta$) and the bump strength (E$_b$). The methodology compares the observed magnitudes with theoretical stellar atmospheres from the models of Coelho. Significant correlations are found between these parameters, related to variations in dust composition, that are complementary to similar scaling relations found in the more complex dust attenuation law of galaxies - that also depend on the distribution of dust among the stellar populations within the galaxy. We recover the strong anticorrelation between A$_V$ and Galactic latitude, as well as a weaker bump strength at higher extinction. $delta$ is also found to correlate with latitude, with steeper laws towards the Galactic plane. Our results suggest that variations in the attenuation law of galaxies cannot be fully explained by dust geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا