ﻻ يوجد ملخص باللغة العربية
We construct a dynamical model of the Milky Way disk from a data set, which combines Gaia EDR3 and APOGEE data throughout Galactocentric radii between $5.0leq Rleq19.5$ kpc. We make use of the spherically-aligned Jeans Anisotropic Method to model the stellar velocities and their velocity dispersions. Building upon our previous work, our model now is fitted to kinematic maps that have been extended to larger Galactocentric radii due to the expansion of our data set, probing the outer regions of the Galactic disk. Our best-fitting dynamical model suggests a logarithmic density slope of $alpha_{rm DM}=-1.602pm0.079_{rm syst}$ for the dark matter halo and a dark matter density of $rho_{rm DM}(R_{odot})=(8.92pm0.56_{rm syst})times 10^{-3}$ M$_{odot}$ pc$^{-3}$ ($0.339pm0.022_{rm syst}$ GeV cm$^{3}$). We estimate a circular velocity at the solar radius of $v_{rm circ}=(234.7pm1.7_{rm syst})$ km s$^{-1}$ with a decline towards larger radii. The total mass density is $rho_{rm tot}(R_{odot})$=$(0.0672pm0.0015_{rm syst})$ M$_{odot}$ pc$^{-3}$ with a slope of $alpha_{rm tot}$=$-2.367pm0.047_{rm syst}$ for $5leq Rleq19.5$ kpc and the total surface density is $Sigma(R{_odot}, |z|leq$ 1.1 kpc)=$(55.5pm1.7_{rm syst})$ M$_{odot}$ pc$^{-2}$. While the statistical errors are small, the error budget of the derived quantities is dominated by the 3 to 7 times larger systematic uncertainties. These values are consistent with our previous determination, but systematic uncertainties are reduced due to the extended data set covering a larger spatial extent of the Milky Way disk. Furthermore, we test the influence of non-axisymmetric features on our resulting model and analyze how a flaring disk model would change our findings.
The kinematics of the Milky Way disc as a function of age are well measured at the solar radius, but have not been studied over a wider range of Galactocentric radii. Here, we measure the kinematics of mono-age, mono-$mathrm{[Fe/H]}$ populations in t
We summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way ha
We investigate the chemo-kinematic properties of the Milky Way disc by exploring the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), and compare our results to smaller optical high-resolution samples in th
We investigate the properties of the double sequences of the Milky Way discs visible in the [$alpha$/Fe] vs [Fe/H] diagram. In the framework of Galactic formation and evolution, we discuss the complex relationships between age, metallicity, [$alpha$/
We employ Gaia DR2 proper motions for 151 Milky Way globular clusters from Vasiliev (2019) in tandem with distances and line-of-sight velocities to derive their kinematical properties. To assign clusters to the Milky Way thick disk, bulge, and halo w