ﻻ يوجد ملخص باللغة العربية
We investigate the chiroptical response of a single plasmonic nanohelix interacting with a weakly-focused circularly-polarized Gaussian beam. The optical scattering at the fundamental resonance is characterized experimentally, and the chiral behavior of the nanohelix is explained based on a multipole analysis. The angularly resolved emission of the excited nanohelix is verified experimentally and it validates the theoretical results. Further, we study the first higher-order resonance and explain the formation of chiral dipoles in both cases.
Nanophotonic chiral antennas exhibit orders of magnitude higher circular dichroism (CD) compared to molecular systems. Merging magnetism and structural chirality at the nanometric level allows for the efficient magnetic control of the dichroic respon
We report a measurement on the temporal response of a plasmonic antenna at the femtosecond time scale. The antenna consists of a square array of nanometer-size gold rods. We find that the far-field dispersion of light reflected from the plasmonic ant
The nonlinear optical response of materials to exciting light is enhanced by resonances between the incident laser frequencies and the energy levels of the excited material. Traditionally, in molecular nonlinear spectroscopy one tunes the input laser
Plasmonic nanoantennas allow for enhancing the spontaneous emission, altering the emission polarization, and shaping the radiation pattern of quantum emitters. A critical challenge for the experimental realizations is positioning a single emitter int
Nanofabrication of photonic components based on dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamo