ترغب بنشر مسار تعليمي؟ اضغط هنا

Portfolio Optimization under Fast Mean-reverting and Rough Fractional Stochastic Environment

165   0   0.0 ( 0 )
 نشر من قبل Jean-Pierre Fouque
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fractional stochastic volatility models have been widely used to capture the non-Markovian structure revealed from financial time series of realized volatility. On the other hand, empirical studies have identified scales in stock price volatility: both fast-time scale on the order of days and slow-scale on the order of months. So, it is natural to study the portfolio optimization problem under the effects of dependence behavior which we will model by fractional Brownian motions with Hurst index $H$, and in the fast or slow regimes characterized by small parameters $eps$ or $delta$. For the slowly varying volatility with $H in (0,1)$, it was shown that the first order correction to the problem value contains two terms of order $delta^H$, one random component and one deterministic function of state processes, while for the fast varying case with $H > half$, the same form holds at order $eps^{1-H}$. This paper is dedicated to the remaining case of a fast-varying rough environment ($H < half$) which exhibits a different behavior. We show that, in the expansion, only one deterministic term of order $sqrt{eps}$ appears in the first order correction.



قيم البحث

اقرأ أيضاً

Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.
This paper studies a robust portfolio optimization problem under the multi-factor volatility model introduced by Christoffersen et al. (2009). The optimal strategy is derived analytically under the worst-case scenario with or without derivative tradi ng. To illustrate the effects of ambiguity, we compare our optimal robust strategy with some strategies that ignore the information of uncertainty, and provide the corresponding welfare analysis. The effects of derivative trading to the optimal portfolio selection are also discussed by considering alternative strategies. Our study is further extended to the cases with jump risks in asset price and correlated volatility factors, respectively. Numerical experiments are provided to demonstrate the behavior of the optimal portfolio and utility loss.
The problem of portfolio optimization when stochastic factors drive returns and volatilities has been studied in previous works by the authors. In particular, they proposed asymptotic approximations for value functions and optimal strategies in the r egime where these factors are running on both slow and fast timescales. However, the rigorous justification of the accuracy of these approximations has been limited to power utilities and a single factor. In this paper, we provide an accuracy analysis for cases with general utility functions and two timescale factors by constructing sub- and super-solutions to the fully nonlinear problem such that their difference is at the desired level of accuracy. This approach will be valuable in various related stochastic control problems.
107 - Guy Uziel , Ran El-Yaniv 2017
Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfoli os of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.
In this paper, we propose a new class of optimization problems, which maximize the terminal wealth and accumulated consumption utility subject to a mean variance criterion controlling the final risk of the portfolio. The multiple-objective optimizati on problem is firstly transformed into a single-objective one by introducing the concept of overall happiness of an investor defined as the aggregation of the terminal wealth under the mean-variance criterion and the expected accumulated utility, and then solved under a game theoretic framework. We have managed to maintain analytical tractability; the closed-form solutions found for a set of special utility functions enable us to discuss some interesting optimal investment strategies that have not been revealed before in literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا