ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub- and Super-solution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Market

196   0   0.0 ( 0 )
 نشر من قبل Ruimeng Hu
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of portfolio optimization when stochastic factors drive returns and volatilities has been studied in previous works by the authors. In particular, they proposed asymptotic approximations for value functions and optimal strategies in the regime where these factors are running on both slow and fast timescales. However, the rigorous justification of the accuracy of these approximations has been limited to power utilities and a single factor. In this paper, we provide an accuracy analysis for cases with general utility functions and two timescale factors by constructing sub- and super-solutions to the fully nonlinear problem such that their difference is at the desired level of accuracy. This approach will be valuable in various related stochastic control problems.



قيم البحث

اقرأ أيضاً

This paper studies a robust portfolio optimization problem under the multi-factor volatility model introduced by Christoffersen et al. (2009). The optimal strategy is derived analytically under the worst-case scenario with or without derivative tradi ng. To illustrate the effects of ambiguity, we compare our optimal robust strategy with some strategies that ignore the information of uncertainty, and provide the corresponding welfare analysis. The effects of derivative trading to the optimal portfolio selection are also discussed by considering alternative strategies. Our study is further extended to the cases with jump risks in asset price and correlated volatility factors, respectively. Numerical experiments are provided to demonstrate the behavior of the optimal portfolio and utility loss.
133 - Donggyu Kim , Seunghyeon Yu 2021
When applying Value at Risk (VaR) procedures to specific positions or portfolios, we often focus on developing procedures only for the specific assets in the portfolio. However, since this small portfolio risk analysis ignores information from assets outside the target portfolio, there may be significant information loss. In this paper, we develop a dynamic process to incorporate the ignored information. We also study how to overcome the curse of dimensionality and discuss where and when benefits occur from a large number of assets, which is called the blessing of dimensionality. We find empirical support for the proposed method.
119 - Zongxia Liang , Yang Liu , Ming Ma 2021
We propose a general family of piecewise hyperbolic absolute risk aversion (PHARA) utility, including many non-standard utilities as examples. A typical application is the composition of an HARA preference and a piecewise linear payoff in hedge fund management. We derive a unified closed-form formula of the optimal portfolio, which is a four-term division. The formula has clear economic meanings, reflecting the behavior of risk aversion, risk seeking, loss aversion and first-order risk aversion. One main finding is that risk-taking behaviors are greatly increased by non-concavity and reduced by non-differentiability.
115 - Zhuo Jin , Zuo Quan Xu , 2020
We study an optimal dividend problem for an insurer who simultaneously controls investment weights in a financial market, liability ratio in the insurance business, and dividend payout rate. The insurer seeks an optimal strategy to maximize her expec ted utility of dividend payments over an infinite horizon. By applying a perturbation approach, we obtain the optimal strategy and the value function in closed form for log and power utility. We conduct an economic analysis to investigate the impact of various model parameters and risk aversion on the insurers optimal strategy.
Fractional stochastic volatility models have been widely used to capture the non-Markovian structure revealed from financial time series of realized volatility. On the other hand, empirical studies have identified scales in stock price volatility: bo th fast-time scale on the order of days and slow-scale on the order of months. So, it is natural to study the portfolio optimization problem under the effects of dependence behavior which we will model by fractional Brownian motions with Hurst index $H$, and in the fast or slow regimes characterized by small parameters $eps$ or $delta$. For the slowly varying volatility with $H in (0,1)$, it was shown that the first order correction to the problem value contains two terms of order $delta^H$, one random component and one deterministic function of state processes, while for the fast varying case with $H > half$, the same form holds at order $eps^{1-H}$. This paper is dedicated to the remaining case of a fast-varying rough environment ($H < half$) which exhibits a different behavior. We show that, in the expansion, only one deterministic term of order $sqrt{eps}$ appears in the first order correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا