ﻻ يوجد ملخص باللغة العربية
Metacirculants are a rich resource of many families of interesting graphs, and weak metacirculants are generalizations of them. A graph is called a {em split weak metacirculant} if it has a vertex-transitive split metacyclic automorphism group. In two recent papers, it is shown that a graph of prime power order is a metacirculant if and only if it is a split weak metacirculant. Let $m$ is a positive integer. In this paper, we first give a sufficient condition for the existence of split weak metacirculants of order $m$ which are not metacirculants. This is then used to give a sufficient and necessary condition for the existence of split weak metacirculants of order $n$ which are not metacirculants, where $n$ is a product of two prime-powers. As byproducts, we construct infinitely many split weak metacirculant graphs which are not metacirculant graphs, and answer an open question reported in the literature.
Let $m,n,r$ be positive integers, and let $G=langle arangle: langle brangle cong mathbb{Z}_n: mathbb{Z}_m$ be a split metacyclic group such that $b^{-1}ab=a^r$. We say that $G$ is {em absolutely split with respect to $langle arangle$} provided that f
Let $G_{m,n,k} = mathbb{Z}_m ltimes_k mathbb{Z}_n$ be the split metacyclic group, where $k$ is a unit modulo $n$. We derive an upper bound for the diameter of $G_{m,n,k}$ using an arithmetic parameter called the textit{weight}, which depends on $n$,
Motivated by Yabes classification of symmetric $2$-generated axial algebras of Monster type, we introduce a large class of algebras of Monster type $(alpha, frac{1}{2})$, generalising Yabes $mathrm{III}(alpha,frac{1}{2}, delta)$ family. Our algebras
A split graph is a graph whose vertices can be partitioned into a clique and a stable set. We investigate the combinatorial species of split graphs, providing species-theoretic generalizations of enumerative results due to Bina and Pv{r}ibil (2015),
Given a strictly increasing sequence $mathbf{t}$ with entries from $[n]:={1,ldots,n}$, a parking completion is a sequence $mathbf{c}$ with $|mathbf{t}|+|mathbf{c}|=n$ and $|{tin mathbf{t}mid tle i}|+|{cin mathbf{c}mid cle i}|ge i$ for all $i$ in $[n]