ﻻ يوجد ملخص باللغة العربية
Motivated by Yabes classification of symmetric $2$-generated axial algebras of Monster type, we introduce a large class of algebras of Monster type $(alpha, frac{1}{2})$, generalising Yabes $mathrm{III}(alpha,frac{1}{2}, delta)$ family. Our algebras bear a striking similarity with Jordan spin factor algebras with the difference being that we asymmetrically split the identity as a sum of two idempotents. We investigate the properties of this algebra, including the existence of a Frobenius form and ideals. In the $2$-generated case, where our algebra is isomorphic to one of Yabes examples, we use our new viewpoint to identify the axet, that is, the closure of the two generating axes.
In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+sum_gamma I_gamma$ with
We consider algebras with basis numerated by elements of a group $G.$ We fix a function $f$ from $Gtimes G$ to a ground field and give a multiplication of the algebra which depends on $f$. We study the basic properties of such algebras. In particular
Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the g
Let p be a prime, K a field of characteristic p, G a locally finite p-group, KG the group algebra, and V the group of the units of KG with augmentation 1. The anti-automorphism gmapsto g^{-1} of G extends linearly to KG; this extension leaves V setwi
It is known that the recently discovered representations of the Artin groups of type A_n, the braid groups, can be constructed via BMW algebras. We introduce similar algebras of type D_n and E_n which also lead to the newly found faithful representat