ﻻ يوجد ملخص باللغة العربية
Traditional anyons in two dimensions have generalized exchange statistics governed by the braid group. By analyzing the topology of configuration space, we discover that an alternate generalization of the symmetric group governs particle exchanges when there are hard-core three-body interactions in one-dimension. We call this new exchange symmetry the traid group and demonstrate that it has abelian and non-abelian representations that are neither bosonic nor fermionic, and which also transform differently under particle exchanges than braid group anyons. We show that generalized exchange statistics occur because, like hard-core two-body interactions in two dimensions, hard-core three-body interactions in one dimension create defects with co-dimension two that make configuration space no longer simply-connected. Ultracold atoms in effectively one-dimensional optical traps provide a possible implementation for this alternate manifestation of anyonic physics.
We study the effects of random scatterers on the ground state of the one-dimensional Lieb-Liniger model of interacting bosons on the unit interval in the Gross-Pitaevskii regime. We prove that Bose Einstein condensation survives even a strong random
We investigate the formation of trimers in an infinite one-dimensional lattice model of hard-core particles with single-particle hopping $t$ and and nearest-neighbour two-body $U$ and three-body $V$ interactions of relevance to Rydberg atoms and pola
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n i
Motivated by previous suggestions that three-body hard-core interactions in lower-dimensional ultracold Bose gases might provide a way for creation of non-Abelian anyons, the exact ground state of a harmonically trapped 1D Bose gas with three-body ha
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow