ترغب بنشر مسار تعليمي؟ اضغط هنا

A Borcherds-Kac-Moody superalgebra with Conway symmetry

95   0   0.0 ( 0 )
 نشر من قبل Natalie Paquette
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a Borcherds Kac-Moody (BKM) superalgebra on which the Conway group Co$_0$ acts faithfully. We show that the BKM algebra is generated by the BRST-closed states in a chiral superstring theory. We use this construction to produce denominator identities for the chiral partition functions of the Conway module $V^{s atural}$, a supersymmetric $c=12$ chiral conformal field theory whose (twisted) partition functions enjoy moonshine properties and which has automorphism group isomorphic to Co$_0$. In particular, these functions satisfy a genus zero property analogous to that of monstrous moonshine. Finally, we suggest how one may promote the denominators to spacetime BPS indices in type II string theory, which might thus furnish a physical explanation of the genus zero property of Conway moonshine.



قيم البحث

اقرأ أيضاً

83 - Alex J. Feingold 2002
This is an expository introduction to fusion rules for affine Kac-Moody algebras, with major focus on the algorithmic aspects of their computation and the relationship with tensor product decompositions. Many explicit examples are included with figur es illustrating the rank 2 cases. New results relating fusion coefficients to tensor product coefficients are proved, and a conjecture is given which shows that the Frenkel-Zhu affine fusion rule theorem can be seen as a beautiful generalization of the Parasarathy-Ranga Rao-Varadarajan tensor product theorem. Previous work of the author and collaborators on a different approach to fusion rules from elementary group theory is also explained.
We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
143 - Jakob Palmkvist 2008
We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilize s a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f4, e6, e7, e8 for n=2. Moreover, we obtain their infinite-dimensional extensions for n greater or equal to 3. In the case of 2x2 matrices the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q).
218 - Kyu-Hwan Lee , Yichao Zhang 2012
Weyl group multiple Dirichlet series, introduced by Brubaker, Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker coefficients of Eisenstein series on metaplectic groups. Chinta and Gunnells constructed these multiple Dirichlet series for all the finite root systems using the method of averaging a Weyl group action on the field of rational functions. In this paper, we generalize Chinta and Gunnells work and construct Weyl group multiple Dirichlet series for the root systems associated with symmetrizable Kac-Moody algebras, and establish their functional equations and meromorphic continuation.
A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M = M_0 times M_1 times cdots times M_n$, where $M_i$ are Einstein spaces ($i geq 1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g. solutions with harmonic functions, $S$-brane and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are reviewed. Some examples of solutions, e.g. corresponding to hyperbolic KM algebras: $H_2(q,q)$, $AE_3$, $HA_2^{(1)}$, $E_{10}$ and Lorentzian KM algebra $P_{10}$ are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا