ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized conformal realizations of Kac-Moody algebras

135   0   0.0 ( 0 )
 نشر من قبل Jakob Palmkvist
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Jakob Palmkvist




اسأل ChatGPT حول البحث

We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f4, e6, e7, e8 for n=2. Moreover, we obtain their infinite-dimensional extensions for n greater or equal to 3. In the case of 2x2 matrices the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q).



قيم البحث

اقرأ أيضاً

We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M = M_0 times M_1 times cdots times M_n$, where $M_i$ are Einstein spaces ($i geq 1$). The sigma-model approach and exact solutions with intersecting composite branes (e.g. solutions with harmonic functions, $S$-brane and black brane ones) with intersection rules related to non-singular Kac-Moody (KM) algebras (e.g. hyperbolic ones) are reviewed. Some examples of solutions, e.g. corresponding to hyperbolic KM algebras: $H_2(q,q)$, $AE_3$, $HA_2^{(1)}$, $E_{10}$ and Lorentzian KM algebra $P_{10}$ are presented.
100 - S. Fernando , F. Mansouri 2000
We show that an $SL(2,R)_L times SL(2,R)_R$ Chern-Simons theory coupled to a source on a manifold with the topology of a disk correctly describes the entropy of the AdS$_3$ black hole. The resulting boundary WZNW theory leads to two copies of a twist ed Kac-Moody algebra, for which the respective Virasoro algebras have the same central charge $c$ as the corresponding untwisted theory. But the eigenvalues of the respective $L_0$ operators are shifted. We show that the asymptotic density of states for this theory is, up to logarithmic corrections, the same as that obtained by Strominger using the asymptotic symmetry of Brown and Henneaux.
180 - Z. Bajnok , D. Nogradi 2000
The symplectic leaves of W-algebras are the intersections of the symplectic leaves of the Kac-Moody algebras and the hypersurface of the second class constraints, which define the W-algebra. This viewpoint enables us to classify the symplectic leaves and also to give a representative for each of them. The case of the (W_{2}) (Virasoro) algebra is investigated in detail, where the positivity of the energy functional is also analyzed.
We describe Hom-Lie structures on affine Kac-Moody and related Lie algebras, and discuss the question when they form a Jordan algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا