ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Optimal Data Detector for Hybrid mmWave MIMO-OFDM Systems with Low-Resolution ADCs

421   0   0.0 ( 0 )
 نشر من قبل Hengtao He
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid analog-digital precoding architectures and low-resolution analog-to-digital converter (ADC) receivers are two solutions to reduce hardware cost and power consumption for millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication systems with large antenna arrays. In this study, we consider a mmWave MIMO-OFDM receiver with a generalized hybrid architecture in which a small number of radio-frequency (RF) chains and low-resolution ADCs are employed simultaneously. Owing to the strong nonlinearity introduced by low-resolution ADCs, the task of data detection is challenging, particularly achieving a Bayesian optimal data detector. This study aims to fill this gap. By using generalized expectation consistent signal recovery technique, we propose a computationally efficient data detection algorithm that provides a minimum mean-square error estimate on data symbols and is extended to a mixed-ADC architecture. Considering particular structure of MIMO-OFDM channel matirx, we provide a lowcomplexity realization in which only FFT operation and matrixvector multiplications are required. Furthermore, we present an analytical framework to study the theoretical performance of the detector in the large-system limit, which can precisely evaluate the performance expressions such as mean-square error and symbol error rate. Based on this optimal detector, the potential of adding a few low-resolution RF chains and high-resolution ADCs for mixed-ADC architecture is investigated. Simulation results confirm the accuracy of our theoretical analysis and can be used for system design rapidly. The results reveal that adding a few low-resolution RF chains to original unquantized systems can obtain significant gains.



قيم البحث

اقرأ أيضاً

This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution ADCs at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to perform simple maximum-ratio combining/maximum-ratio transmission processing by the relay. Also, it is assumed that the destinations use statistical CSI to decode the transmitted signals. Exact and approximated closed-form expressions for the achievable sum rate are presented, which enable the efficient evaluation of the impact of key system parameters on the system performance. In addition, optimal relay power allocation scheme is studied, and power scaling law is characterized. It is found that, with only low-resolution ADCs at the relay, increasing the number of relay antennas is an effective method to compensate for the rate loss caused by coarse quantization. However, it becomes ineffective to handle the detrimental effect of low-resolution ADCs at the destination. Moreover, it is shown that deploying massive relay antenna arrays can still bring significant power savings, i.e., the transmit power of each source can be cut down proportional to $1/M$ to maintain a constant rate, where $M$ is the number of relay antennas.
92 - Lei Chu , Ling Pei , Husheng Li 2019
This paper develops a new deep neural network optimized equalization framework for massive multiple input multiple output orthogonal frequency division multiplexing (MIMOOFDM) systems that employ low-resolution analog-to-digital converters (ADCs) at the base station (BS). The use of lowresolution ADCs could largely reduce hardware complexity and circuit power consumption, however, it makes the channel station information almost blind to the BS, hence causing difficulty in solving the equalization problem. In this paper, we consider a supervised learning architecture, where the goal is to learn a representative function that can predict the targets (constellation points) from the inputs (outputs of the low-resolution ADCs) based on the labeled training data (pilot signals). Especially, our main contributions are two-fold: 1) First, we design a new activation function, whose outputs are close to the constellation points when the parameters are finally optimized, to help us fully exploit the stochastic gradient descent method for the discrete optimization problem. 2) Second, an unsupervised loss is designed and then added to the optimization objective, aiming to enhance the representation ability (so-called generalization). Lastly, various experimental results confirm the superiority of the proposed equalizer over some existing ones, particularly when the statistics of the channel state information are unclear.
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges to the channel estimation problem, and the sparse prior on the channel coefficient vector $boldsymbol x$ in the angle domain is often used to compensate for the information lost during quantization. By interpreting the sparse prior from a probabilistic perspective, we can assume $boldsymbol x$ follows certain sparse prior distribution and recover it using approximate message passing (AMP). However, the distribution parameters are unknown in practice and need to be estimated. Due to the increased computational complexity in the quantization noise model, previous works either use an approximated noise model or manually tune the noise distribution parameters. In this paper, we treat both signals and parameters as random variables and recover them jointly within the AMP framework. The proposed approach leads to a much simpler parameter estimation method, allowing us to work with the quantization noise model directly. Experimental results show that the proposed approach achieves state-of-the-art performance under various noise levels and does not require parameter tuning, making it a practical and maintenance-free approach for channel estimation.
In massive multiple-input multiple-output (MIMO) systems, it may not be power efficient to have a high-resolution analog-to-digital converter (ADC) for each antenna element. In this paper, a near maximum likelihood (nML) detector for uplink multiuser massive MIMO systems is proposed where each antenna is connected to a pair of one-bit ADCs, i.e., one for each real and imaginary component of the baseband signal. The exhaustive search over all the possible transmitted vectors required in the original maximum likelihood (ML) detection problem is relaxed to formulate an ML estimation problem. Then, the ML estimation problem is converted into a convex optimization problem which can be efficiently solved. Using the solution, the base station can perform simple symbol-by-symbol detection for the transmitted signals from multiple users. To further improve detection performance, we also develop a two-stage nML detector that exploits the structures of both the original ML and the proposed (one-stage) nML detectors. Numerical results show that the proposed nML detectors are efficient enough to simultaneously support multiple uplink users adopting higher-order constellations, e.g., 16 quadrature amplitude modulation. Since our detectors exploit the channel state information as part of the detection, an ML channel estimation technique with one-bit ADCs that shares the same structure with our proposed nML detector is also developed. The proposed detectors and channel estimator provide a complete low power solution for the uplink of a massive MIMO system.
The problem of modulation classification for a multiple-antenna (MIMO) system employing orthogonal frequency division multiplexing (OFDM) is investigated under the assumption of unknown frequency-selective fading channels and signal-to-noise ratio (S NR). The classification problem is formulated as a Bayesian inference task, and solutions are proposed based on Gibbs sampling and mean field variational inference. The proposed methods rely on a selection of the prior distributions that adopts a latent Dirichlet model for the modulation type and on the Bayesian network formalism. The Gibbs sampling method converges to the optimal Bayesian solution and, using numerical results, its accuracy is seen to improve for small sample sizes when switching to the mean field variational inference technique after a number of iterations. The speed of convergence is shown to improve via annealing and random restarts. While most of the literature on modulation classification assume that the channels are flat fading, that the number of receive antennas is no less than that of transmit antennas, and that a large number of observed data symbols are available, the proposed methods perform well under more general conditions. Finally, the proposed Bayesian methods are demonstrated to improve over existing non-Bayesian approaches based on independent component analysis and on prior Bayesian methods based on the `superconstellation method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا