ﻻ يوجد ملخص باللغة العربية
This paper develops a new deep neural network optimized equalization framework for massive multiple input multiple output orthogonal frequency division multiplexing (MIMOOFDM) systems that employ low-resolution analog-to-digital converters (ADCs) at the base station (BS). The use of lowresolution ADCs could largely reduce hardware complexity and circuit power consumption, however, it makes the channel station information almost blind to the BS, hence causing difficulty in solving the equalization problem. In this paper, we consider a supervised learning architecture, where the goal is to learn a representative function that can predict the targets (constellation points) from the inputs (outputs of the low-resolution ADCs) based on the labeled training data (pilot signals). Especially, our main contributions are two-fold: 1) First, we design a new activation function, whose outputs are close to the constellation points when the parameters are finally optimized, to help us fully exploit the stochastic gradient descent method for the discrete optimization problem. 2) Second, an unsupervised loss is designed and then added to the optimization objective, aiming to enhance the representation ability (so-called generalization). Lastly, various experimental results confirm the superiority of the proposed equalizer over some existing ones, particularly when the statistics of the channel state information are unclear.
Hybrid analog-digital precoding architectures and low-resolution analog-to-digital converter (ADC) receivers are two solutions to reduce hardware cost and power consumption for millimeter wave (mmWave) multiple-input multiple-output (MIMO) communicat
This paper considers uplink massive multiple-input multiple-output (MIMO) systems with lowresolution analog-to-digital converters (ADCs) over Rician fading channels. Maximum-ratio-combining (MRC) and zero-forcing (ZF) receivers are considered under t
This paper considers a multipair amplify-and-forward massive MIMO relaying system with low-resolution ADCs at both the relay and destinations. The channel state information (CSI) at the relay is obtained via pilot training, which is then utilized to
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges
Orthogonal Time Frequency Space (OTFS) is a novel framework that processes modulation symbols via a time-independent channel characterized by the delay-Doppler domain. The conventional waveform, orthogonal frequency division multiplexing (OFDM), requ