ﻻ يوجد ملخص باللغة العربية
We characterize the environments of local accreting supermassive black holes by measuring the clustering of AGN in the Swift/BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01<z<0.1 over the full sky from the DR1 catalog, BASS provides the largest, least biased sample of local AGN to date due to its hard X-ray selection (14-195 keV) and rich multiwavelength/ancillary data. By measuring the projected cross-correlation function between the AGN and 2MASS galaxies, and interpreting it via halo occupation distribution (HOD) and subhalo-based models, we constrain the occupation statistics of the full sample, as well as in bins of absorbing column density and black hole mass. We find that AGN tend to reside in galaxy group environments, in agreement with previous studies of AGN throughout a large range of luminosity and redshift, and that on average they occupy their dark matter halos similar to inactive galaxies of comparable stellar mass. We also find evidence that obscured AGN tend to reside in denser environments than unobscured AGN, even when samples were matched in luminosity, redshift, stellar mass, and Eddington ratio. We show that this can be explained either by significantly different halo occupation distributions or statistically different host halo assembly histories. Lastly, we see that massive black holes are slightly more likely to reside in central galaxies than black holes of smaller mass.
We present the clustering measurement of hard X-ray selected AGN in the local Universe. We used a sample of 199 sources spectroscopically confirmed detected by Swift-BAT in its 15-55 keV all-sky survey. We measured the real space projected auto-corre
Hard X-ray ($geq 10$ keV) observations of Active Galactic Nuclei (AGN) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, h
We study the observed relation between accretion rate (in terms of L/L_Edd) and shape of the hard X-ray spectral energy distribution (namely the photon index Gamma_X) for a large sample of 228 hard X-ray selected, low-redshift active galactic nuclei
We have performed a very long baseline interferometry (VLBI) survey of local (z < 0.05) ultra hard X-ray (14-195 keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) using KVN, KaVA, and VLBA. We first executed fringe
We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS) which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected ($E>14$ keV) active galactic