ﻻ يوجد ملخص باللغة العربية
We report on the operation of co-located ${}^{129}$Xe and ${}^{131}$Xe nuclear spin masers with an external feedback scheme, and discuss the use of ${}^{131}$Xe as a comagnetometer in measurements of the ${}^{129}$Xe spin precession frequency. By applying a correction based on the observed change in the ${}^{131}$Xe frequency, the frequency instability due to magnetic field and cell temperature drifts are eliminated by two orders of magnitude. The frequency precision of 6.2 $mu$Hz is obtained for a 10$^4$ s averaging time, suggesting the possibility of future improvement to $approx$ 1 nHz by improving the signal-to-noise ratio of the observation.
We place new limits on potential T- and P- violating monopole-dipole interactions between unpolarized nucleons and neutrons using dual species magnetic resonance in polarzed Xe gas. Free-induction decay transients with relaxation times ~20 s allow hi
We make predictions for cross sections of $rho$ and $phi$ vector meson photoproduction in ultraperipheral Xe-Xe collisions at $sqrt{s_{NN}}=5.44$ TeV. Analyzing the momentum transfer distribution of $rho$ mesons in this process, we explore the feasib
We report on a new measurement of the CP-violating permanent Electric Dipole Moment (EDM) of the neutral $^{129}$Xe atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^3$He and $^{12
We study an atomic comagnetometer design based on the spin precessions of $^{129}$Xe and $^{131}$Xe atoms in glass cells. The quadrupole splittings in the precession spectrum of $^{131}$Xe are fully resolved, allowing a precise determination of the m
Measuring the size of permanent electric dipole moments (EDM) of a particle or system provides a powerful tool to test Beyond-the-Standard-Model physics. The diamagnetic $^{129}$Xe atom is one of the promising candidates for EDM experiments due to it