ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Density Fluctuations with Big Bang Nucleosynthesis in the Era of Precision Cosmology

85   0   0.0 ( 0 )
 نشر من قبل Robert J. Scherrer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reexamine big bang nucleosynthesis with large-scale baryon density inhomogeneities when the length scale of the density fluctuations exceeds the neutron diffusion length ($sim 10^7-10^8$ cm at BBN), and the amplitude of the fluctuations is sufficiently small to prevent gravitational collapse. In this limit, the final light element abundances can be determined by simply mixing the abundances from regions with different baryon/photon ratios without interactions. We examine gaussian, lognormal, and gamma distributions for the baryon/photon ratio, $eta $. We find that the deuterium and lithium-7 abundances increase with the RMS fluctuation in $eta $, while the effect on helium-4 is much smaller. We show that these increases in the deuterium and lithium-7 abundances are a consequence of Jensens inequality, and we derive analytic approximations for these abundances in the limit of small RMS fluctuations. Observational upper limits on the primordial deuterium abundance constrain the RMS fluctuation in $eta $ to be less than $17%$ of the mean value of $eta $. This provides us with a new limit on the graininess of the early universe.



قيم البحث

اقرأ أيضاً

We consider Tsallis cosmology as an approach to thermodynamic gravity and derive the bound on the Tsallis parameter to be $beta<2$ by using the constraints derived from the formation of the primordial light elements, Helium, Deuterium and Litium, fro m the observational data from Big Bang Nucleosynthesis (BBN) which allows only a very tiny deviation from General Relativity (GR). Next we consider thermal dark matter (DM) freeze-out mechanism in Tsallis cosmological era and derive bounds on the Tsallis parameter from the observed DM relic abundance to be $1-beta < 10^{-5}$.
Bimetric gravity is a ghost-free and observationally viable extension of general relativity, exhibiting both a massless and a massive graviton. The observed abundances of light elements can be used to constrain the expansion history of the Universe a t the period of Big Bang nucleosynthesis. Applied to bimetric gravity, we readily obtain constraints on the theory parameters which are complementary to other observational probes. For example, the mixing angle between the two gravitons must satisfy $theta lesssim 18^circ$ in the graviton mass range $m_mathrm{FP} gtrsim 10^{-16} , mathrm{eV}/c^2$, representing a factor of two improvement compared with other cosmological probes.
Precision on primordial abundances, deduced from observations, have now reached the percent level for 4He and deuterium. Precision on big bang nucleosynthesis (BBN) predictions should, hence, reach the same level. The uncertainty on the 4He mass frac tion is strongly affected by theoretical uncertainties on the weak reaction rates that interconvert neutrons with protons. All these corrections have been calculated in a self-consistent manner and implemented in a new, and public, Mathematica code PRIMAT, together with an extensive data base of reaction rates. Both can be obtained at http://www2.iap.fr/users/pitrou/primat.htm.
156 - G. Mangano , G. Miele , S. Pastor 2010
The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N_eff. This quantity, in case of no extra degrees of freedom, depends upon th e chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N_eff from primordial neutrino--antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta_nu= eta_{nu_e}+eta_{nu_mu}+eta_{nu_tau} and the initial electron neutrino asymmetry eta_{nu_e}^in, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu_e -bar{nu}_e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the eta_nu -eta_{nu_e}^in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N_eff as a function of the mixing parameter theta_13, and point out the upper bound N_eff < 3.4. Comparing these results with the forthcoming measurement of N_eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
Primordial nucleosynthesis is one of the three historical evidences for the big bang model, together with the expansion of the universe and the cosmic microwave background. Now that the number of neutrino families and the baryonic densities have been fixed by laboratory measurements or CMB observations, the model has no free parameter and its predictions are rigid. Departure from its predictions could provide hints or constraints on new physics or astrophysics in the early universe. Precision on primordial abundances deduced from observations have recently been drastically improved and reach the percent level for both deuterium and helium-4. Accordingly, the BBN predictions should reach the same level of precision. For most isotopes, the dominant sources of uncertainty come from those on the laboratory thermonuclear reactions. This article focuses on helium-4 whose predicted primordial abundance depends essentially on weak interactions which control the neutron-proton ratio. The rates of the various weak interaction processes depend on the experimentally measured neutron lifetime, but also includes numerous corrections that we thoroughly investigate here. They are the radiative, zero-temperature, corrections, finite nucleon mass corrections, finite temperature radiative corrections, weak-magnetism, and QED plasma effects, which are for the first time all included and calculated in a self consistent way, allowing to take into account the correlations between them, and verifying that all satisfy detailed balance. The helium-4 predicted mass fraction is $0.24709pm0.00017$. In addition, we provide a Mathematica code (PRIMAT) that incorporates, not only these corrections but also a full network of reactions, using the best available thermonuclear reaction rates, allowing the predictions of primordial abundances up to the CNO region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا