ترغب بنشر مسار تعليمي؟ اضغط هنا

Quench dynamics of the Ising field theory in a magnetic field

91   0   0.0 ( 0 )
 نشر من قبل Gabor Takacs
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form factor expansions in the pre-quench and post-quench basis, respectively. Our results clarify the domain of validity of these expansions and suggest directions for further improvement. We show for quenches in the $E_8$ model that the initial state is not of the integrable pair state form. We also construct quench overlap functions and show that their high-energy asymptotics are markedly different from those constructed before in the sinh/sine-Gordon theory, and argue that this is related to properties of the ultraviolet fixed point.



قيم البحث

اقرأ أيضاً

133 - John Cardy 2014
We consider a quantum quench in a finite system of length $L$ described by a 1+1-dimensional CFT, of central charge $c$, from a state with finite energy density corresponding to an inverse temperature $betall L$. For times $t$ such that $ell/2<t<(L-e ll)/2$ the reduced density matrix of a subsystem of length $ell$ is exponentially close to a thermal density matrix. We compute exactly the overlap $cal F$ of the state at time $t$ with the initial state and show that in general it is exponentially suppressed at large $L/beta$. However, for minimal models with $c<1$ (more generally, rational CFTs), at times which are integer multiples of $L/2$ (for periodic boundary conditions, $L$ for open boundary conditions) there are (in general, partial) revivals at which $cal F$ is $O(1)$, leading to an eventual complete revival with ${cal F}=1$. There is also interesting structure at all rational values of $t/L$, related to properties of the CFT under modular transformations. At early times $t!ll!(Lbeta)^{1/2}$ there is a universal decay ${cal F}simexpbig(!-!(pi c/3)Lt^2/beta(beta^2+4t^2)big)$. The effect of an irrelevant non-integrable perturbation of the CFT is to progressively broaden each revival at $t=nL/2$ by an amount $O(n^{1/2})$.
157 - F. Igloi , G. Roosz , L. Turban 2014
We study the time evolution of the local magnetization in the critical Ising chain in a transverse field after a sudden change of the parameters at a defect. The relaxation of the defect magnetization is algebraic and the corresponding exponent, whic h is a continuous function of the defect parameters, is calculated exactly. In finite chains the relaxation is oscillating in time and its form is conjectured on the basis of precise numerical calculations.
One of the manifestations of relativistic invariance in non-equilibrium quantum field theory is the horizon effect a.k.a. light-cone spreading of correlations: starting from an initially short-range correlated state, measurements of two observers at distant space-time points are expected to remain independent until their past light-cones overlap. Surprisingly, we find that in the presence of topological excitations correlations can develop outside of horizon and indeed even between infinitely distant points. We demonstrate this effect for a wide class of global quantum quenches to the sine-Gordon model. We point out that besides the maximum velocity bound implied by relativistic invariance, clustering of initial correlations is required to establish the horizon effect. We show that quenches in the sine-Gordon model have an interesting property: despite the fact that the initial states have exponentially decaying correlations and cluster in terms of the bosonic fields, they violate the clustering condition for the soliton fields, which is argued to be related to the non-trivial field topology. The nonlinear dynamics governed by the solitons makes the clustering violation manifest also in correlations of the local bosonic fields after the quench.
We investigate a perturbatively renormalizable $S_{q}$ invariant model with $N=q-1$ scalar field components below the upper critical dimension $d_c=frac{10}{3}$. Our results hint at the existence of multicritical generalizations of the critical model s of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the $(d,q)$ diagram of the Potts model.
We consider three-dimensional statistical systems at phase coexistence in the half-volume with boundary conditions leading to the presence of an interface. Working slightly below the critical temperature, where universal properties emerge, we show ho w the problem can be studied analytically from first principles, starting from the degrees of freedom (particle modes) of the bulk field theory. After deriving the passage probability of the interface and the order parameter profile in the regime in which the interface is not bound to the wall, we show how the theory accounts at the fundamental level also for the binding transition and its key parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا