ﻻ يوجد ملخص باللغة العربية
One of the manifestations of relativistic invariance in non-equilibrium quantum field theory is the horizon effect a.k.a. light-cone spreading of correlations: starting from an initially short-range correlated state, measurements of two observers at distant space-time points are expected to remain independent until their past light-cones overlap. Surprisingly, we find that in the presence of topological excitations correlations can develop outside of horizon and indeed even between infinitely distant points. We demonstrate this effect for a wide class of global quantum quenches to the sine-Gordon model. We point out that besides the maximum velocity bound implied by relativistic invariance, clustering of initial correlations is required to establish the horizon effect. We show that quenches in the sine-Gordon model have an interesting property: despite the fact that the initial states have exponentially decaying correlations and cluster in terms of the bosonic fields, they violate the clustering condition for the soliton fields, which is argued to be related to the non-trivial field topology. The nonlinear dynamics governed by the solitons makes the clustering violation manifest also in correlations of the local bosonic fields after the quench.
We study the quantum quench in two coupled Tomonaga-Luttinger Liquids (TLLs), from the off-critical to the critical regime, relying on the conformal field theory approach and the known solutions for single TLLs. We consider a squeezed form of the ini
We show that the dynamics resulting from preparing a one-dimensional quantum system in the ground state of two decoupled parts, then joined together and left to evolve unitarily with a translational invariant Hamiltonian (a local quench), can be desc
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known
We investigate a class of exactly solvable quantum quench protocols with a finite quench rate in systems of one dimensional non-relativistic fermions in external harmonic oscillator or inverted harmonic oscillator potentials, with time dependent mass