ﻻ يوجد ملخص باللغة العربية
Numerical Relativity is a mature field with many applications in Astrophysics, Cosmology and even in Fundamental Physics. As such, we are entering a stage in which new sophisticated methods adapted to open problems are being developed. In this paper, we advocate the use of Pseudo-Spectral Collocation (PSC) methods in combination with high-order precision arithmetic for Numerical Relativity problems with high accuracy and performance requirements. The PSC method provides exponential convergence (for smooth problems, as is the case in many problems in Numerical Relativity) and we can use different bit precision without the need of changing the structure of the numerical algorithms. Moreover, the PSC method provides high-compression storage of the information. We introduce a series of techniques for combining these tools and show their potential in two problems in relativistic gravitational collapse: (i) The classical Choptuik collapse, estimating with arbitrary precision the location of the apparent horizon. (ii) Collapse in asympotically anti-de Sitter spacetimes, showing that the total energy is preserved by the numerical evolution to a very high degree of precision.
We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be followed in numerical relativity, hence allowing many interesting studies of both fundamental and observational consequences. We study the evolution o
We study the formation of black holes from subhorizon and superhorizon perturbations in a matter dominated universe with 3+1D numerical relativity simulations. We find that there are two primary mechanisms of formation depending on the initial pertur
Carbon nanotubes tend to collapse when their diameters exceed a certain threshold, or when a sufficiently large external pressure is applied on their walls. Their radial stability of tubes has been studied in each of these cases, however a general th
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled gala
We assess the science reach and technical feasibility of a satellite mission based on precision atomic sensors configured to detect gravitational radiation. Conceptual advances in the past three years indicate that a two-satellite constellation with