ﻻ يوجد ملخص باللغة العربية
We study the formation of black holes from subhorizon and superhorizon perturbations in a matter dominated universe with 3+1D numerical relativity simulations. We find that there are two primary mechanisms of formation depending on the initial perturbations mass and geometry -- via $textit{direct collapse}$ of the initial overdensity and via $textit{post-collapse accretion}$ of the ambient dark matter. In particular, for the latter case, the initial perturbation does not have to satisfy the hoop conjecture for a black hole to form. In both cases, the duration of the formation the process is around a Hubble time, and the initial mass of the black hole is $M_mathrm{BH} sim 10^{-2} H^{-1} M_mathrm{Pl}^2$. Post formation, we find that the PBH undergoes rapid mass growth beyond the self-similar limit $M_mathrm{BH}propto H^{-1}$, at least initially. We argue that this implies that most of the final mass of the PBH is accreted from its ambient surroundings post formation.
Primordial black holes (PBHs) are those which may have formed in the early Universe and affected the subsequent evolution of the Universe through their Hawking radiation and gravitational field. To constrain the early Universe from the observational
We re-analyse current single-field inflationary models related to primordial black holes formation. We do so by taking into account recent developments on the estimations of their abundances and the influence of non-gaussianities. We show that, for a
Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to
Primordial black holes could have been formed in the early universe from non linear cosmological perturbations re-entering the cosmological horizon when the Universe was still radiation dominated. Starting from the shape of the power spectrum on supe
We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We a