ﻻ يوجد ملخص باللغة العربية
N44 is the second active site of high mass star formation next to R136 in the Large Magellanic Cloud (LMC). We carried out a detailed analysis of HI at 60 arcsec resolution by using the ATCA & Parkes data. We presented decomposition of the HI emission into two velocity components (the L- and D-components) with the velocity separation of 60 km s$^{-1}$. In addition, we newly defined the I-component whose velocity is intermediate between the L- and D-components. The D-component was used to derive the rotation curve of the LMC disk, which is consistent with the stellar rotation curve (Alves et al. 2000). Toward the active cluster forming region of LHA 120-N 44, the three velocity components of HI gas show signatures of dynamical interaction including bridges and complementary spatial distributions. We hypothesize that the L- and D-components have been colliding with each other since 5 Myrs ago and the interaction triggered formation of the O and early B stars ionizing N44. In the hypothesis the I-component is interpreted as decelerated gas in terms of momentum exchange in the collisional interaction of the L- and D-components. In the N44 region the Planck sub-mm dust optical depth is correlated with the HI intensity, which is well approximated by a linear regression. We found that the N44 region shows a significantly steeper regression line than in the Bar region indicating less dust abundance in the N44 region, which is ascribed to the tidal interaction between the LMC with the SMC 0.2 Gyrs ago.
The galactic tidal interaction is a possible mechanism to trigger the active star formation in galaxies. Recent analyses using the Hi data in the Large Magellanic Cloud (LMC) proposed that the tidally driven colliding HI flows, induced by the galacti
Understanding of massive cluster formation is one of the important issues of astronomy. By analyzing the HI data, we have identified that the two HI velocity components (L- and D-components) are colliding toward the HI Ridge, in the southeastern end
NGC 602 is an outstanding young open cluster in the Small Magellanic Cloud. We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfinder survey project at an angular resolution of 30. The results show that the
LHA 115-N 83 (N83) and LHA 115-N 84 (N84) are HII regions associated with the early stage of star formation located in the Small Magellanic Cloud (SMC). We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfi
By means of different physical mechanisms, the expansion of HII regions can promote the formation of new stars of all masses. RCW 120 is a nearby Galactic HII region where triggered star formation occurs. This region is well-studied - there being a w