ﻻ يوجد ملخص باللغة العربية
Understanding of massive cluster formation is one of the important issues of astronomy. By analyzing the HI data, we have identified that the two HI velocity components (L- and D-components) are colliding toward the HI Ridge, in the southeastern end of the LMC, which hosts the young massive cluster R136 and $sim$400 O/WR stars (Doran et al. 2013) including the progenitor of SN1987A. The collision is possibly evidenced by bridge features connecting the two HI components and complementary distributions between them. We frame a hypothesis that the collision triggered the formation of R136 and the surrounding high-mass stars as well as the HI & Molecular Ridge. Fujimoto & Noguchi (1990) advocated that the last tidal interaction between the LMC and the SMC about 0.2 Gyr ago induced collision of the L- and D-components. This model is consistent with numerical simulations (Bekki & Chiba 2007b). We suggest that a dense HI partly CO cloud of 10$^{6}$ $M_{odot}$, a precursor of R136, was formed at the shock-compressed interface between the colliding L- and D-components. We suggest that part of the low-metalicity gas from the SMC was mixed in the tidal interaction based on the $Planck/IRAS$ data of dust optical depth (Planck Collaboration et al. 2014).
The galactic tidal interaction is a possible mechanism to trigger the active star formation in galaxies. Recent analyses using the Hi data in the Large Magellanic Cloud (LMC) proposed that the tidally driven colliding HI flows, induced by the galacti
N44 is the second active site of high mass star formation next to R136 in the Large Magellanic Cloud (LMC). We carried out a detailed analysis of HI at 60 arcsec resolution by using the ATCA & Parkes data. We presented decomposition of the HI emissio
Young massive clusters (YMCs) are the most intense regions of star formation in galaxies. Formulating a model for YMC formation whilst at the same time meeting the constraints from observations is highly challenging however. We show that forming YMCs
NGC 602 is an outstanding young open cluster in the Small Magellanic Cloud. We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfinder survey project at an angular resolution of 30. The results show that the
LHA 115-N 83 (N83) and LHA 115-N 84 (N84) are HII regions associated with the early stage of star formation located in the Small Magellanic Cloud (SMC). We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfi