ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement of Purification in Free Scalar Field Theories

432   0   0.0 ( 0 )
 نشر من قبل Arpan Bhattacharyya
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the entanglement of purification (EoP) in a 2d free scalar field theory with various masses. This quantity measures correlations between two subsystems and is reduced to the entanglement entropy when the total system is pure. We obtain explicit numerical values by assuming minimal gaussian wave functionals for the purified states. We find that when the distance between the subsystems is large, the EoP behaves like the mutual information. However, when the distance is small, the EoP shows a characteristic behavior which qualitatively agrees with the conjectured holographic computation and which is different from that of the mutual information. We also study behaviors of mutual information in purified spaces and violations of monogamy/strong superadditivity.



قيم البحث

اقرأ أيضاً

Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theo retic properties of mixed states via entanglement and complexity of purifications. In this article, we analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories using, for the first time, the~most general Gaussian purifications. We provide a comprehensive comparison with existing results and identify universal properties. We further discuss important subtleties in our setup: the massless limit of the free bosonic theory and the corresponding behaviour of the mutual information, as well as the Hilbert space structure under the Jordan-Wigner mapping in the spin chain model of the Ising conformal field theory.
We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.
A general method to build the entanglement renormalization (cMERA) for interacting quantum field theories is presented. We improve upon the well-known Gaussian formalism used in free theories through a class of variational non-Gaussian wavefunctional s for which expectation values of local operators can be efficiently calculated analytically and in a closed form. The method consists of a series of scale-dependent nonlinear canonical transformations on the fields of the theory under consideration. Here, the $lambda, phi^4$ and the sine-Gordon scalar theories are used to illustrate how non-perturbative effects far beyond the Gaussian approximation are obtained by considering the energy functional and the correlation functions of the theory.
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find that the EoP becomes a non-monotonic function of the distance between $A$ and $B$ when the total number of lattice sites is small. When it is large, the EoP becomes monotonic and shows a plateau-like behavior. Moreover, we show that the original reflection symmetry which exchanges $A$ and $B$ can get broken in optimally purified systems. In the Ising model, we find this symmetry breaking in the ferromagnetic phase. We provide an interpretation of our results in terms of the interplay between classical and quantum correlations.
We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare these results with the mutual information and ones for RCFTs. Our results directly suggest the classical correlation also plays an important role in the subregion/subregion duality even for dynamical setup. Besides a local operator quench, we study the reflected entropy in a heavy state and provide improved bulk interpretation. We checked the above results also hold for the odd entanglement entropy, which is another measure for mixed states related to the entanglement wedge cross section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا